Skip to main content
Log in

A Highly Stable Silver Nanoparticle Loaded Magnetic Nanocomposite as a Recyclable Catalysts

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The broad application of organic dyes such as 4-nitrophenol (4-NP), rhodamine 6G (R6G), and methylene blue (MB) as raw materials in the manufacture of dyes, explosives, pesticides, preservatives, and pharmaceuticals caused serious damage to the environment, particularly aquatic ecosystems. In this study, silver nanoparticles decorated ZnO/Fe3O4 (Ag/ZnO/Fe3O4) nanocomposite was used as a catalyst to reduce 4-NP, R6G, and MB in the presence of sodium borohydride as a reducing agent. Silver nanoparticles decorated ZnO/Fe3O4 composite was synthesized via a simple and inexpensive chemical reduction method. Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) were used to characterize the particles. The surface-enhanced Raman spectroscopy (SERS) activity of the nanocomposites due to AgNPs was used to monitor catalytic reactions with detailed spectral features using SERS. Thus, the catalytic transformation of 4-nitrothiophenol (4-NTP) into 4-aminothiophenol (4-ATP) was traced using SERS. The magnetic property of the nanocomposites enables its repeated use. Easy recovery of the particles from the reaction solution was achieved and run for fifteen cycles with no significant loss of its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Das, V. S. Sypu, H. K. Paumo, M. Bhaumik, V. Maharaj, and A. Maity (2019). Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 244, 546–558.

    Article  CAS  Google Scholar 

  2. Y. Wang, P. Gao, Y. Wei, Y. Jin, S. Sun, Z. Wang, and Y. Jiang (2021). Silver nanoparticles decorated magnetic polymer composites (Fe3O4@PS@Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes. J. Environ. Manage. 278, 111473.

    Article  CAS  PubMed  Google Scholar 

  3. M. T. Alula, B. A. Aragaw, S. T. Modukanele, and J. Yang (2021). Enhanced catalytic activity of silver nanoparticles loaded into Fe3O4 nanoparticles towards reduction of 4-nitrophenol, degradation of organic dyes and oxidation of o-phenylenediamine. Inorg. Chem. Commun. 127, 108504.

    Article  CAS  Google Scholar 

  4. M. H. Kahsay, D. RamaDevi, Y. P. Kumar, B. S. Mohan, A. Tadesse, G. Battu, and K. Basavaiah (2018). Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities. OpenNano 3, 28–37.

    Article  Google Scholar 

  5. M. Nasrollahzadeh, M. Atarod, B. Jaleh, and M. Gandomirouzbahani (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Int. 42, 8587–8596.

    Article  CAS  Google Scholar 

  6. H. Veisi, S. B. Moradi, A. Saljooqi, and P. Safarimehr (2019). Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4 @TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. Mater. Sci. Eng. C. 100, 445–452.

    Article  CAS  Google Scholar 

  7. U. Kurtan and A. Baykal (2014). Fabrication and characterization of Fe3O4@APTES@ PAMAM-Ag highly active and recyclable magnetic nanocatalyst: catalytic reduction of 4- nitrophenol. Mater. Res. Bull. 60, 79–87.

    Article  CAS  Google Scholar 

  8. P. D. Tomke and V. K. Rathod (2020). Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan-AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. Int. J. Biol. Macromol. 149, 989–999.

    Article  CAS  PubMed  Google Scholar 

  9. M. R. Islam, M. Ferdous, M. I. Sujan, X. Mao, H. Zeng, and M. S. Azam (2020). Recyclable Ag-decorated highly carbonaceous magnetic nanocomposites for the removal of organic pollutants. J. Colloid Interface Sci. 562, 52–62.

    Article  CAS  PubMed  Google Scholar 

  10. G. Liao, Y. Gong, L. Zhong, J. Fang, L. Zhang, Z. Xu, H. Gao, and Baizeng Fang (2019). Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 12, 2407–2436.

    Article  CAS  Google Scholar 

  11. C. Wen, A. Yin, and W.-L. Dai (2014). Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Appl. Catal. B 160–161, 730–741.

    Article  Google Scholar 

  12. Y. R. Mejía and N. K. R. Bogireddy (2022). Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv. 12, 18661–18675.

    Article  PubMed  PubMed Central  Google Scholar 

  13. H. Xu, L. Yan, Y. Yu, and Y. Xu (2018). Facile synthesis of carbon-supported silver nanoparticles for optical limiting. Appl. Surf. Sci. 457, 655–661.

    Article  CAS  Google Scholar 

  14. Z. Ji, X. Shen, X. Yue, H. Zhou, J. Yang, Y. Wang, L. Ma, and K. Chen (2015). Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity. J. Colloid Interface Sci. 459, 79–85.

    Article  CAS  PubMed  Google Scholar 

  15. E. Hariprasad and T. P. Radhakrishnan (2012). Palladium nanoparticle-embedded polymer thin film “dip catalyst” for Suzuki-Miyaura reaction. ACS Catal. 2, 1179–1186.

    Article  CAS  Google Scholar 

  16. K. Zhang, C. Wang, Z. Rong, R. Xiao, Z. Zhou, and S. Wang (2017). Silver coated magnetic microflowers as efficient and recyclable catalysts for catalytic reduction. New J. Chem. 41, 14199–14208.

    Article  CAS  Google Scholar 

  17. Q. Liu, L. Zhou, L. Liu, J. Li, S. Wang, H. Znad, and S. Liu (2020). Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol. Compos. Part B Eng. 200, 108345.

    Article  CAS  Google Scholar 

  18. H. Koga, T. Kitaoka, and H. Wariishi (2009). In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J. Mater. Chem. 19, 2135–2140.

    Article  CAS  Google Scholar 

  19. M. T. Alula, P. Lemmens, L. Bo, D. Wulferding, J. Yang, and H. Spende (2019). Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Anal. Chim. Acta 1073, 62–71.

    Article  CAS  PubMed  Google Scholar 

  20. S. F. Chin, K. S. Iyer, and C. L. Raston (2009). Facile and green approach to fabricate gold and silver coated superparamagnetic nanoparticles. Cryst. Growth Des. 9, 2685–2689.

    Article  CAS  Google Scholar 

  21. J. Xia, A. Wang, X. Liu, and Z. Su (2011). Preparation and characterization of bifunctional, Fe3O4 /ZnO nanocomposites and their use as photocatalysts. Appl. Surf. Sci. 257, 9724–9732.

    Article  CAS  Google Scholar 

  22. M. T. Alula and J. Yang (2014). Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Talanta 130, 55–62.

    Article  PubMed  Google Scholar 

  23. R. He, X. Qian, J. Yin, and Z. Zhu (2002). Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 12, 3783–3786.

    Article  CAS  Google Scholar 

  24. M. T. Alula and J. Yang (2014). Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering. Anal. Chim. Acta 812, 114–120.

    Article  CAS  PubMed  Google Scholar 

  25. M. T. Alula, M. L. Madingwane, H. Yan, P. Lemmens, L. Zhe, and M. Etzkorn (2022). Biosynthesis of bifunctional silver nanoparticles for catalytic reduction of organic pollutants and optical monitoring of mercury (II) ions using their oxidase-mimic activity. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21619-7.

    Article  Google Scholar 

  26. N. Pradhan, A. Pal, and T. Pal (2002). Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A Physicochem. Eng. Asp. 196, 247–257.

    Article  CAS  Google Scholar 

  27. X. Chen, X. Chen, Z. Cai, and M. Oyama (2014). AuPd bimetallic nanoparticles decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2, 5668–5674.

    Article  CAS  Google Scholar 

  28. Y. Liu, Y. Y. Zhang, Q. W. Kou, Y. Chen, D. L. Han, D. D. Wang, Z. Y. Lu, L. Chen, J. H. Yang, and S. Xing (2018). Eco-friendly seeded Fe3O4-Ag nanocrystals: a new type of highly efficient and low cost catalyst for methylene blue reduction. RSC Adv. 8, 2209–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. T. Alula, P. Lemmens, M. Madiba, and B. Present (2020). Synthesis of free-standing silver nanoparticles coated filter paper for recyclable catalytic reduction of 4-nitrophenol and organic dyes. Cellulose 27, 2279–2292.

    Article  CAS  Google Scholar 

  30. Y. Qiu, Z. Ma, and P. Hu (2014). Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2, 13471–13478.

    Article  CAS  Google Scholar 

  31. M. Mazhani, M. T. Alula, and D. Murape (2021). SERS assisted monitoring of catalytic reduction reaction using silver-magnetic nanocomposites. Mater. Chem. Phys. 265, 124487.

    Article  CAS  Google Scholar 

  32. T. B. Nguyen, C. P. Huang, and R. A. Doong (2019). Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl. Catal. B Environ. 240, 337–347.

    Article  CAS  Google Scholar 

  33. F. H. Lin and R. A. Doong (2014). Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Appl. Catal. A Gen. 486, 32–41.

    Article  CAS  Google Scholar 

  34. A. N. Chishti, L. Ni, F. Guo, X. Lin, Y. Liu, H. Wu, M. Chen, and G. W. Diao (2021). Magnetite-Silica core-shell nanocomposites decorated with silver nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of methylene blue dye in the water. J. Environ. Chem. Eng. 9, 104948.

    Article  CAS  Google Scholar 

  35. H. Veisi, S. Razeghi, P. Mohammadi, and S. Hemmati (2019). Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4 /SiO2 -Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater. Sci. Eng. C 97, 624–631.

    Article  CAS  Google Scholar 

  36. U. Kurtan, M. Amir, A. Yildiz, and A. Baykal (2016). Synthesis of magnetically recyclable MnFe2O4 @SiO2 @Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction. Appl. Surf. Sci. 376, 16–25.

    Article  CAS  Google Scholar 

  37. M. T. Shah, A. Balouch, A. A. Sirajuddin, Abdullah Pathan, A. M. Mahar, S. Sabir, R. Khattak, and A. A. Umar (2017). SiO2 caped Fe3O4 nanostructures as an active heterogeneous catalyst for 4-nitrophenol reduction. Microsyst. Technol. 23, 5745–5758.

    Article  CAS  Google Scholar 

  38. N. Esmaeili, P. Mohammadi, M. Abbaszadeh, and H. Sheibani (2019). Au nanoparticles decorated on magnetic nanocomposite (GO-Fe3O4/Dop/Au) as a recoverable catalyst for degradation of methylene blue and methyl orange in water. Int. J. Hydrog. Energy 44, 23002–23009.

    Article  CAS  Google Scholar 

  39. J. Shen, Y. Zhou, J. Huang, Y. Zhu, J. Zhu, X. Yang, W. Chen, Y. Yao, S. Qian, H. Jiang, and C. Li (2017). In-situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag-Au microspheres. Appl. Catal. B Environ. 205, 11–18.

    Article  CAS  Google Scholar 

  40. W. Shen, Y. Qu, X. Pei, S. Li, S. You, J. Wang, Z. Zhang, and J. Zhou (2017). Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp WL-Au. J. Hazard. Mater. 321, 299–306.

    Article  CAS  PubMed  Google Scholar 

  41. G. Zheng, L. Polavarapu, L. M. Liz-Marzán, I. Pastoriza-Santos, and J. Pérez-Juste (2015). Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem. Commun. 51, 4572–4575.

    Article  CAS  Google Scholar 

  42. P. Rajapandiyan and J. Yang (2012). Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Anal. Chem. 84, 10277–10282.

    Article  CAS  PubMed  Google Scholar 

  43. K. He, N. Chen, C. Wang, L. Wei, and J. Chen (2018). Method for determining crystal grain size by X-ray diffraction. Cryst. Res. Technol. 53, 1700157.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support for this project was obtained from Botswana International University of Science and Technology (BIUST) initiation grant (DVC/RDI/2/1/16I (48) that was awarded to MTA and we would like to thank BIUST for the financial assistance. The authors would also like to thank Prof. Amare Gessesse and Prof. Asfawossen Asrat Kassaye for editing the revised manuscript.

Funding

The financial support for this project was obtained from Botswana International University of Science and Technology (BIUST) initiation Grant (DVC/RDI/2/1/16I (48).

Author information

Authors and Affiliations

Authors

Contributions

MTA: conceptualization, methodology, formal analysis, investigation, writing—part of original draft, review & editing. HS: investigation. TAA: writing—review & editing. ANA: writing—part of original draft. BAA: formal analysis, Writing—review & editing. MM: investigation, analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Melisew Tadele Alula.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 97 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alula, M.T., Spende, H., Aragaw, T.A. et al. A Highly Stable Silver Nanoparticle Loaded Magnetic Nanocomposite as a Recyclable Catalysts. J Clust Sci 34, 2205–2214 (2023). https://doi.org/10.1007/s10876-022-02386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02386-4

Keywords

Navigation