Skip to main content

Advertisement

Log in

In Vitro Cancer Cell Imaging, Free Radical Scavenging, and Fe3+ Sensing Activity of Green Synthesized Carbon Dots from Leaves of Piper longum

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The development of carbon dots via a green synthesis approach from natural products is one of the most researched areas nowadays. Herein, we present the synthesis of Piper longum leaves-derived aqueous carbon dots (PLACDs) via the simplest ecofriendly hydrothermal carbonization method. The PLACDs exhibited excitation-dependent emission behavior with maximum emission at 450 nm at an excitation wavelength of 365 nm. The High-Resolution Transmission Electron Microscopy results showed a quasi-spherical shape with an average size of 4.121 nm. The sharp diffractions of X-ray diffraction revealed its nanocrystalline property. The Energy Dispersive X-ray spectra reflected the presence of carbon, nitrogen, and oxygen. The Fourier-Transform Infrared Spectroscopy disclosed the existence of –OH, –C=C, –C=O, and –C–O–C groups. The PLACDs presented excellent biocompatibility against B16F10 (melanoma) and SiHa (cervical carcinoma) cells lines with concentration-dependent in vitro bioimaging results. It also exhibited antiradical activity with the IC50 value of 0.499 mg/mL and 0.051 mg/mL against DPPH and ABTS.+, respectively. It showed Fe3+ sensing with a lower limit of detection of 0.673 μM. Further, the PLACDs displayed excellent bacterial biocompatibility, pH-dependent fluorescence property, fluorescent ink property, photostability, physical, chemical, and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data recorded and generated during this research are included in this article, and some of the data are also supplied as supplementary files.

Code Availability

All the data were produced using MS office package, a 21-day free trial version of Origin Pro 2021 (Microcal Software, Inc., Northampton, Northampton, MA, USA), and ImageJ software (National Institutes of Health, Bethesda, MD).

References

  1. Z. Peng, X. Han, S. Li, A. O. Al-Youbi, A. S. Bashammakh, M. S. El-Shahawi, and R. M. Leblanc (2017). Coord. Chem. Rev. 343, 256.

    Article  CAS  Google Scholar 

  2. L.-M. Shen and J. Liu (2016). Talanta 156, 245.

    Article  PubMed  Google Scholar 

  3. J. A. Jaleel and K. Pramod (2018). J. Control Release 269, 302.

    Article  CAS  PubMed  Google Scholar 

  4. M. A. Issa, Z. Z. Abidin, S. Sobri, S. A. Rashid, M. A. Mahdi, and N. A. Ibrahim (2020). J. Sci. Rep. 10 (1), 1.

    Article  Google Scholar 

  5. P. Namdari, B. Negahdari, and A. Eatemadi (2017). Biomed. Pharmacother. 87, 209.

    Article  CAS  PubMed  Google Scholar 

  6. V. N. Mehta, S. Jha, and S. K. Kailasa (2014). Mater. Sci. Eng. C 38, 20.

    Article  CAS  Google Scholar 

  7. J. R. Bhamore, S. Jha, T. J. Park, and S. K. Kailasa (2019). J. Photochem. Photobiol. B 191, 150.

    Article  CAS  PubMed  Google Scholar 

  8. T. Feng, X. Ai, G. An, P. Yang, and Y. Zhao (2016). ACS Nano 10 (5), 5587.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Zeng, D. Shao, X. He, Z. Ren, W. Ji, C. Shan, S. Qu, J. Li, L. Chen, and Q. Li (2016). J. Mater. Chem. B 4 (30), 5119.

    Article  CAS  PubMed  Google Scholar 

  10. C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, and W. Liu (2012). Biomaterials 33 (13), 3604.

    Article  CAS  PubMed  Google Scholar 

  11. S. L. D’souza, B. Deshmukh, K. A. Rawat, J. R. Bhamore, N. Lenka, and S. K. Kailasa (2016). New J. Chem. 40 (8), 7075.

    Article  CAS  Google Scholar 

  12. D.-W. Zheng, B. Li, C.-X. Li, J.-X. Fan, Q. Lei, C. Li, Z. Xu, and X.-Z. Zhang (2016). ACS nano 10 (9), 8715.

    Article  CAS  PubMed  Google Scholar 

  13. X. Sun and Y. Lei (2017). Trends Analyt. Chem. 89, 163.

    Article  CAS  Google Scholar 

  14. X. An, S. Zhuo, P. Zhang, and C. Zhu (2015). RSC Adv. 5 (26), 19853.

    Article  CAS  Google Scholar 

  15. M.J. Meziani, X. Dong, L. Zhu, L.P. Jones, G.E. LeCroy, F. Yang, S. Wang, P. Wang, Y. Zhao, L. Yang, ACS Appl. Mater. Interfaces 8 (17), 10761 (2016)

  16. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, S. Perumal, and Y. R. Lee (2018). Colloids Surf. B Biointerfaces 169, 321.

    Article  CAS  PubMed  Google Scholar 

  17. I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, E. Rodríguez-Castellón, D. Mutavdžić, K. Radotić, and T. J. Bandosz (2019). Carbon 144, 791.

    Article  CAS  Google Scholar 

  18. S. Zhao, M. Lan, X. Zhu, H. Xue, T.-W. Ng, X. Meng, C.-S. Lee, P. Wang, W. Zhang, ACS Appl. Mater. Interfaces 7(31), 17054 (2015)

  19. P. Roy, P.-C. Chen, A. P. Periasamy, Y.-N. Chen, and H.-T. Chang (2015). Mater. Today 18 (8), 447.

    Article  CAS  Google Scholar 

  20. Y. Han, D. Tang, Y. Yang, C. Li, W. Kong, H. Huang, Y. Liu, and Z. Kang (2015). Nanoscale 7 (14), 5955.

    Article  CAS  PubMed  Google Scholar 

  21. T. Feng, Q. Zeng, S. Lu, X. Yan, J. Liu, S. Tao, M. Yang, and B. Yang (2018). ACS Photonics 5 (2), 502.

    Article  CAS  Google Scholar 

  22. A. N. Sahu and D. Mohapatra (2021). Nanomedicine 16 (28), 2491.

    Article  CAS  PubMed  Google Scholar 

  23. A.N. Sahu, D. Mohapatra, Herbal Drug Formulation and Standardization. (Ane Books Pvt. Ltd., 2021), p 1–10

  24. D. Mohapatra, A. K. Agrawal, and A. N. Sahu (2021). J. Microencapsul. 38 (7–8), 594.

    Article  CAS  PubMed  Google Scholar 

  25. G. G. Naik, J. Shah, A. K. Balasubramaniam, and A. N. Sahu (2021). Nanomedicine 16 (7), 587.

    Article  CAS  PubMed  Google Scholar 

  26. S. A. A. Vandarkuzhali, V. Jeyalakshmi, G. Sivaraman, S. Singaravadivel, K. R. Krishnamurthy, and B. Viswanathan (2017). Sens. Actuators B Chem. 252, 894.

    Article  CAS  Google Scholar 

  27. S. Manjusha, N. Parameswaran, and R. S. Malar (2018). Indo. Am. J. Pharm. Sci. 5 (4), 2942.

    CAS  Google Scholar 

  28. J. Das, D. Jha, R. Policegoudra, A. H. Mazumder, M. Das, P. Chattopadhyay, and L. Singh (2012). Indian J. Microbiol. 52 (4), 624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. T. Varughese, P.K. Unnikrishnan, M. Deepak, I. Balachandran, A. Rema Shree, J. Essent. Oil-Bear. Plants 19(1), 52 (2016)

  30. J. Du, N. Xu, J. Fan, W. Sun, and X. Peng (2019). Small 15 (32), 1805087.

    Article  Google Scholar 

  31. H. Li, X. Yan, D. Kong, R. Jin, C. Sun, D. Du, Y. Lin, and G. Lu (2020). Nanoscale Horiz. 5 (2), 218.

    Article  CAS  Google Scholar 

  32. K. O. Boakye-Yiadom, S. Kesse, Y. Opoku-Damoah, M. S. Filli, M. Aquib, M. M. B. Joelle, M. A. Farooq, R. Mavlyanova, F. Raza, and R. Bavi (2019). Int. J. Pharm. 564, 308.

    Article  CAS  PubMed  Google Scholar 

  33. D. Mohapatra, M. B. Alam, V. Pandey, R. Pratap, P. K. Dubey, A. S. Parmar, and A. N. Sahu (2021). Nanomedicine 16 (23), 2039.

    Article  CAS  PubMed  Google Scholar 

  34. D. Mohapatra, R. Pratap, V. Pandey, P.K. Dubey, A.K. Agrawal, A.S. Parmar, A.N. Sahu, J. Fluoresc. 1 (2021)

  35. K. Pavithra and S. J. F. S. Vadivukkarasi (2015). Food Sci. Hum. Wellness 4 (1), 42.

    Article  Google Scholar 

  36. N. Maddu, In Antioxidants, (IntechOpen, 2019), p. 1–10

  37. L. A. Pham-Huy, H. He, and C. Pham-Huy (2008). Int. J. Biomed. Sci. 4 (2), 89.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. G. G. Naik, M. B. Alam, V. Pandey, D. Mohapatra, P. K. Dubey, A. S. Parmar, and A. N. Sahu (2020). J. Fluoresc. 30 (2), 407.

    Article  CAS  PubMed  Google Scholar 

  39. K. K. Gudimella, T. Appidi, H.-F. Wu, V. Battula, A. Jogdand, A. K. Rengan, and G. Gedda (2021). Colloids Surf. B 197.

    Article  CAS  Google Scholar 

  40. J. Jia, B. Lin, Y. Gao, Y. Jiao, L. Li, C. Dong, and S. Shuang (2019). Spectrochim. Acta A 211, 363.

    Article  CAS  PubMed  Google Scholar 

  41. T. Pal, S. Mohiyuddin, and G. Packirisamy (2018). ACS omega 3 (1), 831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D. Yang, L. Li, L. Cao, Y. Zhang, M. Ge, R. Yan, W.-F. Dong, Analyst 146 (7) (2021)

  43. X. Zhang, H. Wang, C. Ma, N. Niu, Z. Chen, S. Liu, J. Li, and S. Li (2018). Mater. Chem. Front. 2 (7), 1269.

    Article  CAS  Google Scholar 

  44. A. Bayat, S. Masoum, and E. S. Hosseini (2019). J. Mol. Liq. 281, 134.

    Article  CAS  Google Scholar 

  45. X. Ding, L. Song, Y. Han, Y. Wang, X. Tang, G. Cui, Z. Xu, Biomed. Res. Int. 2019, (2019)

  46. G. R. Rout and S. Sahoo (2015). Rev. Agric. Sci. 3, 1.

    Article  Google Scholar 

  47. S. K. Kailasa, S. Ha, S. H. Baek, S. Kim, K. Kwak, and T. J. Park (2019). Mater. Sci. Eng. C 98, 834.

    Article  CAS  Google Scholar 

  48. G. Venkatesan, V. Rajagopalan, and S. N. Chakravarthula (2019). J. Environ. Chem. Eng. 7 (2).

    Article  CAS  Google Scholar 

  49. T. N. J. I. Edison, R. Atchudan, J.-J. Shim, S. Kalimuthu, B.-C. Ahn, and Y. R. Lee (2016). J. Photochem. Photobiol. B 158, 235.

    Article  CAS  PubMed  Google Scholar 

  50. U. H. A. M. Hazli, A. Abdul-Aziz, S. Mat-Junit, C. F. Chee, and K. W. Kong (2019). Food Res. Int. 115, 241.

    Article  Google Scholar 

  51. E.A. Shalaby, S.M. Shanab, Indian J. Geomarine Sci. (2013)

  52. A.A. Shahat, S. Hidayathulla, A.A. Khan, A.M. Alanazi, O.T. Al Meanazel, A.S. Alqahtani, M.S. Alsaid, A.A. Hussein, Acta. Trop. 191, 243 (2019)

  53. M. A. Jhonsi, D. A. Ananth, G. Nambirajan, T. Sivasudha, R. Yamini, S. Bera, and A. Kathiravan (2018). Spectrochim. Acta A 196, 295.

    Article  CAS  Google Scholar 

  54. A. Sachdev and P. Gopinath (2015). Analyst 140 (12), 4260.

    Article  CAS  PubMed  Google Scholar 

  55. C. J. Jeong, A. K. Roy, S. H. Kim, J.-E. Lee, J. H. Jeong, I. In, and S. Y. Park (2014). Nanoscale 6 (24), 15196.

    Article  CAS  PubMed  Google Scholar 

  56. M. Thakur, S. Pandey, A. Mewada, V. Patil, M. Khade, E. Goshi, M. Sharon, J. Drug Deliv. (2014)

  57. W. Li, Z. Yue, C. Wang, W. Zhang, and G. Liu (2013). RSC Adv. 3 (43), 20662.

    Article  CAS  Google Scholar 

  58. V. N. Mehta, S. Jha, R. K. Singhal, and S. K. Kailasa (2014). New J. Chem. 38 (12), 6152.

    Article  CAS  Google Scholar 

  59. K. Hola, A. B. Bourlinos, O. Kozak, K. Berka, K. M. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, and E. P. Giannelis (2014). Carbon 70, 279.

    Article  CAS  Google Scholar 

  60. V. Arul, T. N. J. I. Edison, Y. R. Lee, and M. G. Sethuraman (2017). J. Photochem. Photobiol. B 168, 142.

    Article  CAS  PubMed  Google Scholar 

  61. P. C. Senapati, S. K. Sahoo, and A. N. Sahu (2016). Biomed. Pharmacother. 80, 42.

    Article  CAS  PubMed  Google Scholar 

  62. L. Wu, J. Zhang, and W. Watanabe (2011). Adv. Drug Deliv. Rev. 63 (6), 456.

    Article  CAS  PubMed  Google Scholar 

  63. A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon, and M. Sharon (2013). Mater. Sci. Eng. C 33 (5), 2914.

    Article  CAS  Google Scholar 

  64. W. Zhang, Z. Zeng, and J. Wei (2017). J. Phys. Chem. C 121 (34), 18635.

    Article  CAS  Google Scholar 

  65. N. Sharma, G. S. Das, and K. J. A. M. Yun (2020). Biotechnology 104 (16), 7187.

    CAS  Google Scholar 

  66. S. Roy, P. Ezati, J.-W. Rhim, and A. C. S. Appl (2021). Polym. Mater. 3 (12), 6437.

    CAS  Google Scholar 

  67. C. Dong, S. Wang, M. Ma, P. Wei, Y. Chen, A. Wu, Z. Zha, and H. Bi (2021). Appl. Mater. Today 25.

    Article  Google Scholar 

  68. J. Zhao, H. Wang, H. Geng, Q. Yang, Y. Tong, W. He, and A. C. S. Appl (2021). Nano Mater. 4 (7), 7253.

    CAS  Google Scholar 

  69. Z. T. Rosenkrans, T. Sun, D. Jiang, W. Chen, T. E. Barnhart, Z. Zhang, C. A. Ferreira, X. Wang, J. W. Engle, and P. Huang (2020). Adv. Sci. 7 (12), 2000420.

    Article  CAS  Google Scholar 

  70. X. Gong, W. Lu, M. C. Paau, Q. Hu, X. Wu, S. Shuang, C. Dong, and M. M. Choi (2015). Anal. Chim. Acta 861, 74.

    Article  CAS  PubMed  Google Scholar 

  71. Y. Dong, J. Cai, X. You, and Y. Chi (2015). Analyst 140 (22), 7468.

    Article  CAS  PubMed  Google Scholar 

  72. M. J. Molaei (2020). Anal. Methods 12 (10), 1266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Pharmaceutical Engineering & Technology, IIT (BHU); Department of Physics, IIT (BHU); Centre for Genetics Disorders, Institute of Science, Banaras Hindu University, and Central Instrument Facility, IIT (BHU), Varanasi, India for providing infrastructural and instrumental services. The microbiological facilities provided by the Department of Microbiology, IMS (BHU), Varanasi, India, are also greatly acknowledged.

Funding

The financial support for this work was provided as a scholarship to Debadatta Mohapatra by the Ministry of Human Resource Development (MHRD), Government of India. Author Alakh N. Sahu is thankful to the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India, New Delhi, India, for providing the funding (Sanction order No. BT/PR25498/NER/95/1223/2017) for exploring phytochemical and pharmacological evaluations of bioactivity guided fractions of medicinal plants of Tripura.

Author information

Authors and Affiliations

Authors

Contributions

Debadatta Mohapatra executed most of the experimental works, data collection, processing, analysis, validation, interpretation, and wrote the original manuscript. Ravi Pratap, Vivek Pandey, and Singh Shreya contributed to the experimentation, reviewed, edited, and scientifically modified the manuscript. Alakh N. Sahu, Avanish S. Parmar, Pawan K. Dubey, and Prakash Ch. Senapati contributed to supervision, interpretation of data & concluding the results, technical support, manuscript review, and editing functions.

Corresponding author

Correspondence to Alakh N. Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Approval not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, D., Pratap, R., Pandey, V. et al. In Vitro Cancer Cell Imaging, Free Radical Scavenging, and Fe3+ Sensing Activity of Green Synthesized Carbon Dots from Leaves of Piper longum. J Clust Sci 34, 1269–1290 (2023). https://doi.org/10.1007/s10876-022-02303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02303-9

Keywords

Navigation