Skip to main content

Advertisement

Log in

Competent Two Dimensional Charge Transfer Kinetics Via Single Layered Molybdenum Sulphide with Nitrogen Doped Graphene Oxide for Water Treatment

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Single layered two-dimensional (2D) molybdenum sulphide (MoS2) was prepared via hydrothermal synthesis. 2D MoS2 nanosheets were incorporated with 2D nitrogen doped graphene oxide (NGO). NGO/MoS2 composite with 2D-2D electronic transition interactions exhibited the enhanced photocatalytic performance than MoS2. This is due to the formation of heterojunction that heightens the charge separation efficiency and promoted the charge transfer kinetics. XRD shows characteristics peaks of MoS2 and NGO. SEM illustrates the well-defined structure of nano-flower sheets of pure and composite material. HRTEM reveals NGO nanosheets coupled with flower like MoS2 nanosheets facilitating strong interfacial coupling. DRS spectra of composite material show reduction in band gap of MoS2 owing to incorporation of NGO. Formation of strong interfacial coupling and exposure of more active sites in 10.0% NGO/MoS2 composite suppress the charge recombination which is responsible for highest photo activity and photocurrent for strong interfacial charge transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. J. Feng, Y. Hou, X. Wang, W. Quan, J. Zhang, Y. Wang, and L. Li (2016). In-depth study on adsorption and photocatalytic performance of novel reduced graphene oxide-Zn Fe2O4-polyaniline composites. J of Alloys Comp 681, 157–166.

    Article  CAS  Google Scholar 

  2. S. Sajjad, T. Bano, and S. A. K. Leghari (2017). Efficient visible light magnetic modified iron oxide photo catalysts Ceram. Int. 43, 14672–14677.

    Google Scholar 

  3. N. Kann (2012). Applications of the Nicholas reaction in the synthesis of natural products. Current Organic Chemistry 16 (3), 322–334.

    Article  CAS  Google Scholar 

  4. Y. Yang, Z. Ma, L. Xu, H. Wang, and N. Fu (2016). Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue. Applied Surface Science 369, 576–583.

    Article  CAS  Google Scholar 

  5. J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, and C. He (2015). 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheets for lithium-ion battery anode. ACS Nano 9, 3837–3848.

    Article  CAS  PubMed  Google Scholar 

  6. X. Huang, Z. Y. Zeng, and H. Zhang (2013). Metal dichalcogenide nanosheets: preparation, properties and applications Chem. Soc. Rev. 42, 1934–1946.

    Article  CAS  Google Scholar 

  7. C. L. Tan and H. Zhang (2015). Two-dimensional transition metal dichalcogenide nanosheet-based composites Chem. Soc. Rev. 44, 2713–2731.

    Article  CAS  Google Scholar 

  8. Z. Hu, L. X. Wang, K. Zhang, J. B. Wang, F. Y. Cheng, Z. L. Tao, and J. Chen (2014). MoS2 nanoflower with expanded interlayers as high-performance anodes for sodium-ion batteries Angew. Chem. Int. Edit. 53, 12794–12798.

    Article  CAS  Google Scholar 

  9. X. Hong, J. Q. Liu, B. Zheng, X. Huang, X. Zhang, C. L. Tan, J. Z. Chen, Z. X. Fan, and H. Zhang (2014). A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts Adv. Mater. 26, 6250–6254.

    CAS  Google Scholar 

  10. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla (2013). Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227.

    Article  CAS  PubMed  Google Scholar 

  11. W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, and Y. Zhao (2014). High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8 (7), 6922–6933.

    Article  CAS  PubMed  Google Scholar 

  12. J. Jia, F. Xu, S. Wang, X. Jiang, Z. Long, and X. Hou (2014). Two-dimensional MoS2 nanosheets as a capillary GC stationary phase for highly effective molecular screening. Analyst 139 (14), 3533–3536.

    Article  CAS  PubMed  Google Scholar 

  13. G. Eda and S. A. Maier (2013). Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7 (7), 5660–5665.

    Article  CAS  PubMed  Google Scholar 

  14. B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero (2013). Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano letters 13 (9), 4212–4216.

    Article  CAS  PubMed  Google Scholar 

  15. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz (2010). Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 105 (13), 136805.

    Article  PubMed  Google Scholar 

  16. S. Noor, S. Sajjad, S. A. K. Leghari, and M. Long (2020). Energy harvesting for electrochemical OER and solar photocatalysis via dual functional GO/TiO2-NiO nanocomposite. Journal of Cleaner Production 277, 123280.

    Article  CAS  Google Scholar 

  17. T. T. Shan, S. Xin, Y. You, H. P. Cong, S. H. Yu, and A. Manthiram (2016). Combining nitrogen-doped graphene sheets and MoS2: a unique film–foam–film structure for enhanced lithium storage. Angewandte Chemie International Edition 55 (41), 12783–12788.

    Article  CAS  PubMed  Google Scholar 

  18. L. Zou, R. Qu, H. Gao, X. Guan, X. Qi, C. Liu, and X. Lei (2019). MoS 2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results in Physics 14, 102458.

    Article  Google Scholar 

  19. H. Xie and X. Xiong (2017). A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. Journal of Environmental Chemical Engineering 5 (1), 1150–1158.

    Article  CAS  Google Scholar 

  20. F. J. Sheu, C. P. Cho, Y. T. Liao, and C. T. Yu (2018). Ag3PO4-TiO2 graphene oxide ternary composites with efficient photodegradation, hydrogen evolution, and antibacterial properties. Catalysts 8 (2), 57.

    Article  Google Scholar 

  21. B. Li, X. Shao, T. Liu, L. Shao, and B. Zhang (2016). Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental 198, 325–333.

    Article  CAS  Google Scholar 

  22. S. Noor, S. Sajjad, S. A. K. Leghari, I. Ahmad, and T. Mahmood (2020). Visible light efficient and photo stable nanostructure of GO/CuO/m-TiO2 ternary composite. Materials Research Express 6 (12), 1250d8.

    Article  Google Scholar 

  23. A. H. Gemeay, R. G. Elsharkawy, and E. F. Aboelfetoh (2018). Graphene oxide/polyaniline/manganese oxide ternary nanocomposites, facile synthesis, characterization, and application for indigo carmine removal. Journal of Polymers and the Environment 26 (2), 655–669.

    Article  CAS  Google Scholar 

  24. X. Xu, T. Yuan, Y. Zhou, Y. Li, J. Lu, X. Tian, and J. Wang (2014). Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy 39 (28), 16043–16052.

    Article  CAS  Google Scholar 

  25. Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, and X. Feng (2013). Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62, 296–301.

    Article  CAS  Google Scholar 

  26. C. H. Choi, M. W. Chung, H. C. Kwon, S. H. Park, and S. I. Woo (2013). B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. Journal of Materials Chemistry A 1 (11), 3694–3699.

    Article  CAS  Google Scholar 

  27. Y. J. Tang, Y. Wang, X. L. Wang, S. L. Li, W. Huang, L. Z. Dong, and Y. Q. Lan (2016). Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Advanced Energy Materials 6 (12), 1600116.

    Article  Google Scholar 

  28. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J. M. Tour (2010). Improved synthesis of graphene oxide. ACS Nano 4 (8), 4806–4814.

    Article  CAS  PubMed  Google Scholar 

  29. J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao, and S. Zhang (2012). Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Applied Materials & Interfaces 4 (7), 3636–3642.

    Article  CAS  Google Scholar 

  30. A. Iqbal, S. Sajjad, and S. A. K. Leghari (2018). Low cost graphene oxide modified alumina nanocomposite as solar light induced photocatalyst. ACS Applied Nano Materials 1 (9), 4612–4621.

    Article  CAS  Google Scholar 

  31. K. Chang, D. Geng, X. Li, J. Yang, Y. Tang, M. Cai, and X. Sun (2013). Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible Lithium storage. Advanced Energy Materials 3 (7), 839–844.

    Article  CAS  Google Scholar 

  32. Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu, and S. Wang (2014). Magnetic ZnFe2O4–C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Industrial & Engineering Chemistry Research 53 (44), 17294–17302.

    Article  CAS  Google Scholar 

  33. X. J. Wang, W. Y. Yang, F. T. Li, Y. B. Xue, R. H. Liu, and Y. J. Hao (2013). In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Industrial & Engineering Chemistry Research 52 (48), 17140–17150.

    Article  CAS  Google Scholar 

  34. X. Ren, X. Ren, L. Pang, Y. Zhang, Q. Ma, H. Fan, and S. F. Liu (2016). MoS2/sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy 41 (2), 916–923.

    Article  CAS  Google Scholar 

  35. S. Liu, C. Li, J. Yu, and Q. Xiang (2011). Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13 (7), 2533–2541.

    Article  CAS  Google Scholar 

  36. Y. Miao, H. Zhang, S. Yuan, Z. Jiao, and X. Zhu (2016). Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. Journal of Colloids and Interface Science 462, 9–18.

    Article  CAS  Google Scholar 

  37. Kuvarega, A. T., Krause, R. W., & Mamba, B. B. (2014). Comparison between base metals and platinum group metals in nitrogen, M co-doped TiO2 (M= Fe, Cu, Pd, Os) for photocatalytic removal of an organic dye in water. Journal of Nanomaterials

  38. S. V. Vattikuti and C. Byon (2015). Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: nanotribology. Journal of Nanomaterials 2015, 1–11.

    Google Scholar 

  39. W. A. Syed, A. Ali, N. Rafiq, W. H. Shah, N. A. Shah, and M. Yasir (2019). BaCl2 an efficient replacement of CdCl2 treatment step for thermally deposited CdTe thin film. Materials Research Express 6 (8), 086438.

    Article  CAS  Google Scholar 

  40. P. Liu, Y. Liu, W. Ye, J. Ma, and D. Gao (2016). Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27 (22), 2254.

    Article  Google Scholar 

  41. S. Noor, S. Sajjad, S. A. K. Leghari, C. Flox, and T. Kallio (2020). Efficient electrochemical hydrogen evolution reaction and solar activity via bi-functional GO/Co3O4–TiO2 nano hybrid structure. International Journal of Hydrogen Energy 45 (35), 17410–17421.

    Article  CAS  Google Scholar 

  42. Z. Yousaf, S. Sajjad, S. A. K. Leghari, M. Mehboob, A. Kanwal, and B. Uzair (2020). Interfacial charge transfer via 2D-NiO and 2D-graphene nanosheets combination for significant visible photocatalysis. Journal of Solid State Chemistry 291, 121606.

    Article  CAS  Google Scholar 

  43. G. S. Jamila, S. Sajjad, S. A. K. Leghari, and M. Long (2020). Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photo catalyst. Journal of Hazardous Materials. 382, 121087.

    Article  CAS  PubMed  Google Scholar 

  44. A. Kanwal, S. Sajjad, and S. A. K. Leghari (2021). Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst. Journal of Physics and Chemistry of Solids 151, 109899.

    Article  CAS  Google Scholar 

  45. G. S. Jamila, S. Sajjad, S. A. K. Leghari, and T. Mahmood (2020). Role of nitrogen doped carbon quantum dots on CuO nano-leaves as solar induced photo catalyst. Journal of Physics and Chemistry of Solids 138, 109233.

    Article  CAS  Google Scholar 

  46. U. Qumar, M. Ikram, M. Imran, A. Haider, A. Ul-Hamid, J. Haider, and S. Ali (2020). Synergistic effect of Bi-doped exfoliated MoS2 nanosheets on their bactericidal and dye degradation potential. Dalton Transactions 49 (16), 5362–5377.

    Article  CAS  PubMed  Google Scholar 

  47. J. Li, X. Liu, L. Pan, W. Qin, T. Chen, and Z. Sun (2014). MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Advances 4 (19), 9647–9651.

    Article  CAS  Google Scholar 

  48. S. P. Vattikuti, C. Byon, C. V. Reddy, and R. V. S. S. N. Ravikumar (2015). Improved photocatalytic activity of MoS2 nanosheets decorated with SnO2 nanoparticles. RSC Advances 5 (105), 86675–86684.

    Article  CAS  Google Scholar 

  49. H. Xie and X. Xiong (2017). A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. J. Environ. Chemical Engg 5 (1), 1150–1158.

    Article  CAS  Google Scholar 

  50. X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu, and Y. He (2022). Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater. Journal of Colloid and Interface Science 607, 412–422.

    Article  CAS  PubMed  Google Scholar 

  51. Z. Li, Q. Zhang, L. Wang, J. Yang, Y. Wu, and Y. He (2021). Novel application of Ag/PbBiO2I nanocomposite in piezocatalytic degradation of rhodamine B via harvesting ultrasonic vibration energy. Ultrasonics sonochemistry 78, 105729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Y. Li, H. Chen, L. Wang, T. Wu, Y. Wu, and Y. He (2021). KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrasonics Sonochemistry 78, 105754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L. Cheng, D. Huang, Y. Zhang, and Y. Wu (2021). Preparation and piezoelectric catalytic performance of HT-Bi2MoO6 microspheres for dye degradation. Advanced Powder Technology 32 (9), 3346–3354.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is acknowledged to International Islamic University, Higher Education Commission of Pakistan (NRPU Grant No. 3660) and Pakistan Institute of Engineering and Applied Sciences, Islamabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamaila sajjad.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehboob, M., Haider, R.S., sajjad, S. et al. Competent Two Dimensional Charge Transfer Kinetics Via Single Layered Molybdenum Sulphide with Nitrogen Doped Graphene Oxide for Water Treatment. J Clust Sci 34, 199–210 (2023). https://doi.org/10.1007/s10876-021-02215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02215-0

Keywords

Navigation