Skip to main content

Advertisement

Log in

Eco-Mediated Synthesis of Visible Active Bi2WO6 Nanoparticles and its Performance Towards Photocatalyst, Supercapacitor, Biosensor, and Antioxidant Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A heterogeneous photocatalyst exhibits more significant potential for the conversion of photon energy into chemical energy. In this work, we have been successfully synthesized multifunctional heterogeneous photocatalyst bismuth tungstate (Bi2WO6) nanoparticles by solution combustion route employing jackfruit extract as fuel. Structural characteristics of nanoparticles were investigated by powder X-ray diffraction (PXRD), Fourier transforms infrared (FTIR), and UV–Visible (UV–Vis) spectroscopy, and Raman spectroscopy. In contrast, surface morphologies were studied by SEM analysis. Further, the material's bandgap was found to be 2.8 eV, indicating the semiconducting nature of prepared nanoparticles. The Bi2WO6 nanoparticles were subjected to photoluminescence, photocatalytic, antioxidant activity, and it has also been used to detect Dopamine at the tracer level and act as stimulating electrode material for supercapacitors. Furthermore, we also report that Bi2WO6 nanoparticles are an efficient heterogeneous photocatalyst for the degradation of industrial dye in polluted water under visible light irradiation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y. Wang, R. Liang, and F. Fang (2015). J. Nanosci. Nanotechnol. 15, 5487.

    Article  CAS  PubMed  Google Scholar 

  2. F.S.A. Khan, N.M. Mubarak, M. Khalid, E.C. Abdullah, Functionalized Carbon nanomaterial for artificial bone replacement as filler material, in Sustainable polymer composites and nanocomposites (Springer, Cham, 2019).

  3. K. Niemirowicz, B. Durnaś, E. Piktel, and R. Bucki (2017). Nanomedicine 12, 1891.

    Article  CAS  PubMed  Google Scholar 

  4. M. Maas (2016). Materials 9, 617.

    Article  PubMed Central  CAS  Google Scholar 

  5. Y. Choi, J. H. Hwang, and S. Y. Lee (2018). Small Methods 2, 1700351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Z. Ashikbayeva, D. Tosi, D. Balmassov, E. Schena, P. Saccomandi, and V. Inglezakis (2019). Nanomaterials 9, 1195.

    Article  CAS  PubMed Central  Google Scholar 

  7. M. K. Riley and W. Vermerris (2017). Nanomaterials 7, 94.

    Article  PubMed Central  CAS  Google Scholar 

  8. W. Li, R. Fang, Y. Xia, W. Zhang, X. Wang, X. Xia, and J. Tu (2019). Batter. Supercaps 2, 9.

    Article  CAS  Google Scholar 

  9. S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, and K.-H. Kim (2017). Renew. Sustain. Energy Rev. 73, 821.

    Article  CAS  Google Scholar 

  10. S. Nambiar, Application of nanomaterials for X-ray shielding and dosimetry in diagnostic radiology, (2015).

  11. B. Hetzer, V. Gräf, E. Walz, and R. Greiner (2021). Food Addit. Contam. Part A 38, 741.

    Article  CAS  Google Scholar 

  12. M. Lv, Y. Liu, J. Geng, X. Kou, Z. Xin, and D. Yang (2018). Biosens. Bioelectron. 106, 122.

    Article  CAS  PubMed  Google Scholar 

  13. B. R. Smith and S. S. Gambhir (2017). Chem. Rev. 117, 901.

    Article  CAS  PubMed  Google Scholar 

  14. C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace, and A. Bhatnagar (2016). Chem. Eng. J. 306, 1116.

    Article  CAS  Google Scholar 

  15. X. Chen, C. Li, M. Grätzel, R. Kostecki, and S. S. Mao (2012). Chem. Soc. Rev. 41, 7909.

    Article  CAS  PubMed  Google Scholar 

  16. C. Wang, Y. Yu, M. Irfan, B. Xu, J. Li, L. Zhang, Z. Qin, C. Yu, H. Liu, and X. Su (2020). Small 16, 2002578.

    Article  CAS  Google Scholar 

  17. E. O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valerio, and T. H. Mekonnen (2020). Appl. Mater. Today 18, 100473.

    Article  Google Scholar 

  18. R. Mo and Z. Gu (2016). Mater. Today 19, 274.

    Article  CAS  Google Scholar 

  19. Y. Zhou, L. Tong, X. Zeng, and X. Chen (2014). New J. Chem. 38, 1973.

    Article  CAS  Google Scholar 

  20. G. Huang, C. Zhang, and Y. Zhu (2007). J. Alloys Compd. 432, 269.

    Article  CAS  Google Scholar 

  21. V. L. Ranganatha, K. S. Nithin, S. A. Khanum, G. Nagaraju, and C. Mallikarjunaswamy (2019). AIP Conf. Proc. 2162, 020089.

    Article  CAS  Google Scholar 

  22. B. S. Surendra, C. Mallikarjunaswamy, S. Pramila, and N. D. Rekha (2021). Environ. Nanotechnol. Monit. Manag. 15, 100442.

    Google Scholar 

  23. V. L. Ranganatha, S. Pramila, G. Nagaraju, B. S. Surendra, and C. Mallikarjunaswamy (2020). J. Mater. Sci. 31, 17386.

    Google Scholar 

  24. C. Mallikarjunaswamy, S. Pramila, G. Nagaraju, R. Ramu, and V. L. Ranganatha (2021). J. Mater. Sci. 32, 1.

    Google Scholar 

  25. C. Xu, X. Wei, Z. Ren, Y. Wang, G. Xu, G. Shen, and G. Han (2009). Mater. Lett. 63, 2194.

    Article  CAS  Google Scholar 

  26. D. Saha, A. H. Mamakhel, and B. B. Iversen (2020). Inorg. Chem. 59, 9364.

    Article  CAS  PubMed  Google Scholar 

  27. R. Jiménez, A. Castro, and B. Jiménez (2003). Appl. Phys. Lett. 83, 3350.

    Article  CAS  Google Scholar 

  28. A. Castro, P. Begue, B. Jimenez, J. Ricote, R. Jimenez, and J. Galy (2003). Chem. Mater. 15, 3395.

    Article  CAS  Google Scholar 

  29. Y. Noguchi, R. Satoh, M. Miyayama, and T. Kudo (2001). J. Ceram. Soc. Japan. 109, 29.

    Article  CAS  Google Scholar 

  30. G. S. Murugan and K. B. R. Varma (2001). J. Non. Cryst. Solids. 279, 1.

    Article  Google Scholar 

  31. G. S. Murugan, G. N. Subbanna, and K. B. R. Varma (1999). J. Mater. Sci. Lett. 18, 1687.

    Article  CAS  Google Scholar 

  32. L. Wu, J. Bi, Z. Li, X. Wang, and X. Fu (2008). Catal. Today 131, 15.

    Article  CAS  Google Scholar 

  33. F.-J. Zhang, F.-Z. Xie, J. Liu, W. Zhao, and K. Zhang (2013). Ultrason. Sonochem. 20, 209.

    Article  PubMed  CAS  Google Scholar 

  34. Z. Zhang, W. Wang, M. Shang, and W. Yin (2010). J. Hazard. Mater. 177, 1013.

    Article  CAS  PubMed  Google Scholar 

  35. J. He, W. Wang, F. Long, Z. Zou, Z. Fu, and Z. Xu (2012). Mater. Sci. Eng. B. 177, 967.

    Article  CAS  Google Scholar 

  36. G. Zhang, F. Lü, M. Li, J. Yang, X. Zhang, and B. Huang (2010). J. Phys. Chem. Solids 71, 579.

    Article  CAS  Google Scholar 

  37. M. Abdollahnia, A. Makhdoumi, M. Mashreghi, and H. Eshghi (2020). PLoS ONE 15, e0229886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. L. Stepanov, A. N. Golubev, S. I. Nikitin, and Y. N. Osin (2014). Rev. Adv. Mater. Sci. 38, 160.

    CAS  Google Scholar 

  39. S. S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry (2003). J. Mater. Chem. 13, 1822.

    Article  CAS  Google Scholar 

  40. S. K. Sivaraman, I. Elango, S. Kumar, and V. Santhanam (2009). Curr. Sci. 97, 1055.

    CAS  Google Scholar 

  41. Y. Shao, Y. Jin, and S. Dong (2004). Chem. Commun. 9, 1104.

    Article  CAS  Google Scholar 

  42. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez (2008). Water Res. 42, 4591.

    Article  CAS  PubMed  Google Scholar 

  43. N. J. Vickers (2017). Curr. Biol. 27, R713.

    Article  CAS  PubMed  Google Scholar 

  44. Y. N. Tan, J. Y. Lee, and D. I. C. Wang (2010). J. Am. Chem. Soc. 132, 5677.

    Article  CAS  PubMed  Google Scholar 

  45. X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao, and B. Shi (2011). Green Chem. 13, 950.

    Article  CAS  Google Scholar 

  46. K. D. Arunachalam, S. K. Annamalai, and S. Hari (2013). Int. J. Nanomed. 8, 1307.

    Article  CAS  Google Scholar 

  47. Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt (2011). IET Nanobiotechnol. 5, 69.

    Article  CAS  PubMed  Google Scholar 

  48. M. Khatami, S. Pourseyedi, M. Khatami, H. Hamidi, M. Zaeifi, and L. Soltani (2015). Bioresour. Bioprocess. 2, 1.

    Article  Google Scholar 

  49. H. Xu, L. Wang, H. Su, L. Gu, T. Han, F. Meng, and C. Liu (2015). Food Biophys. 10, 12.

    Article  Google Scholar 

  50. M. T. Haseeb, M. A. Hussain, K. Abbas, B. G. M. Youssif, S. Bashir, S. H. Yuk, and S. N. A. Bukhari (2017). Int. J. Nanomed. 12, 2845.

    Article  CAS  Google Scholar 

  51. V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar (2016). Mater. Sci. Eng. C 58, 36.

    Article  CAS  Google Scholar 

  52. M. Dhayalan, M. I. J. Denison, and K. Krishnan (2017). Nat. Prod. Res. 31, 465.

    Article  CAS  PubMed  Google Scholar 

  53. N. Gogoi, P. J. Babu, C. Mahanta, and U. Bora (2015). Mater. Sci. Eng. C 46, 463.

    Article  CAS  Google Scholar 

  54. A. Ebrahiminezhad, Y. Barzegar, Y. Ghasemi, and A. Berenjian (2017). Chem. Ind. Chem. Eng. Q 23, 31.

    Article  CAS  Google Scholar 

  55. N. Chandrasekhar and S. P. Vinay (2017). Appl. Nanosci. 7, 851.

    Article  CAS  Google Scholar 

  56. M. Hariram, V. Ganesan, S. Muthuramkumar, and S. Vivekanandhan (2021). J. Aust. Ceram. Soc. 57, 505.

    Article  CAS  Google Scholar 

  57. B. Ajitha, Y. A. K. Reddy, Y. Lee, M. J. Kim, and C. W. Ahn (2019). Appl. Organomet. Chem. 33, e4867.

    Article  CAS  Google Scholar 

  58. S. Pugazhendhi, E. Kirubha, P. K. Palanisamy, and R. Gopalakrishnan (2015). Appl. Surf. Sci. 357, 1801.

    Article  CAS  Google Scholar 

  59. P. R. R. Sre, M. Reka, R. Poovazhagi, M. A. Kumar, and K. Murugesan (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 1137.

    Article  CAS  Google Scholar 

  60. N. H. Rao, N. Lakshmidevi, S. V. N. Pammi, P. Kollu, S. Ganapaty, and P. Lakshmi (2016). Mater. Sci. Eng. C 62, 553.

    Article  CAS  Google Scholar 

  61. A. K. Mittal, D. Tripathy, A. Choudhary, P. K. Aili, A. Chatterjee, I. P. Singh, and U. C. Banerjee (2015). Mater. Sci. Eng. C 53, 120.

    Article  CAS  Google Scholar 

  62. J. M. Jacob, R. M. Balakrishnan, and U. B. Kumar (2014). Mater. Lett. 124, 279.

    Article  CAS  Google Scholar 

  63. H. Bao, N. Hao, Y. Yang, and D. Zhao (2010). Nano Res. 3, 481.

    Article  CAS  Google Scholar 

  64. H. Bao, Z. Lu, X. Cui, Y. Qiao, J. Guo, J. M. Anderson, and C. Ming (2010). Acta Biomater. 6, 3534.

    Article  CAS  PubMed  Google Scholar 

  65. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A.-A. Nohi (2007). Process Biochem. 42, 919.

    Article  CAS  Google Scholar 

  66. J. R. Lloyd, P. Yong, and L. E. Macaskie (1998). Appl. Environ. Microbiol. 64, 4607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S. Zhong, C. Li, M. Shen, C. Lv, and S. Zhang (2019). J. Mater. Res. Technol. 8, 1849.

    Article  CAS  Google Scholar 

  68. Z. Du, R. Guo, J. Lan, S. Jiang, C. Cheng, L. Zhao, and L. Peng (2017). Fibers Polym. 18, 2212.

    Article  CAS  Google Scholar 

  69. H. Ahsaine, A. Taoufyq, M. Ezahri, A. Benlhachemi, J.R. Gavarri, Synthesis and characterization of Bi2WO6 and its effect towards the degradation of methylene blue, (2014).

  70. H. A. Ahsaine, A. Slassi, M. Ezahri, A. Benlhachemi, B. Bakiz, F. Guinneton, and J.-R. Gavarri (2016). RSC Adv. 6, 101105.

    Article  CAS  Google Scholar 

  71. X. Zhu, K. Pathakoti, H.-M. Hwang, Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation, in Green Synthesis, Characterization and Applications of Nanoparticles (Elsevier, Amsterdam, 2019), pp. 223–263.

  72. S. T. Aruna and A. S. Mukasyan (2008). Curr. Opin. Solid State Mater. Sci. 12, 44.

    Article  CAS  Google Scholar 

  73. V. L. Ranganatha, S. Pramila, G. Nagaraju, B. S. Surendra, and C. Mallikarjunaswamy (2020). J. Mater. Sci. 31, 1.

    Google Scholar 

  74. C. Mallikarjunaswamy, V. L. Ranganatha, R. Ramu, and G. Nagaraju (2020). J. Mater. Sci. 31, 1.

    Google Scholar 

  75. N. Razali, R. Razab, S. M. Junit, and A. A. Aziz (2008). Food Chem. 111, 38.

    Article  CAS  Google Scholar 

  76. S. Meghashri, H. V. Kumar, and S. Gopal (2010). Food Chem. 122, 105.

    Article  CAS  Google Scholar 

  77. R. Ramu, P. S. Shirahatti, F. Zameer, L. V. Ranganatha, and M. N. N. Prasad (2014). S. Afr. J. Bot. 95, 54.

    Article  CAS  Google Scholar 

  78. A. Phuruangrat, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, and T. Thongtem (2014). J. Nanomater. 2014, 59.

    Google Scholar 

  79. M. Ge and L. Liu (2014). Mater. Sci. Semicond. Process. 25, 258.

    Article  CAS  Google Scholar 

  80. L. Zhang and Y. Zhu (2012). Catal. Sci. Technol. 2, 694.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Mallikarjunaswamy C, Ms. Pramila S, and Dr. Lakshmi Ranganatha V gratefully acknowledge the Management and Principals of JSS College of Arts, Commerce and Science, Ooty Road, Mysuru, and The National Institute of Engineering (NIE), Mysuru for constant support and providing the laboratory facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mallikarjunaswamy.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramila, S., Ranganatha, V.L., Soundarya, T.L. et al. Eco-Mediated Synthesis of Visible Active Bi2WO6 Nanoparticles and its Performance Towards Photocatalyst, Supercapacitor, Biosensor, and Antioxidant Activity. J Clust Sci 33, 2233–2248 (2022). https://doi.org/10.1007/s10876-021-02147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02147-9

Keywords

Navigation