Skip to main content
Log in

Artificial Neural Network Modeling of Fungus-Mediated Extracellular Biosynthesis of Zirconium Nanoparticles Using Standard Penicillium spp.

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Different growth stages of Penicillium notatum, P. purpurogenum and P. aculeatum were evaluated for their potential for zirconium nanoparticle (Zr-NP) biosynthesis by total protein content assay. Fungal secreted protein concentrations for all three species were higher at deceleration phase. For optimizing biosynthesis conditions with respect to Zr-NP size, different pH values and ZrCl4 concentrations were tested and analyzed. The artificial neural network (ANN) modeling was then applied to find the best conditions. A feed-forward ANN model was used to make a connection between the output as the size of Zr-NPs, with three input variables, including pH, ZrCl4 concentration and fungal species. An optimal multi-layer perceptron neural network was finally designed to model the experimental data for which the correlation coefficients R2 at each phase (training, validation and test sets) were calculated to be 0.9946, 0.9952 and 0.9997, respectively. The accuracy of the model was confirmed through validation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. O. Simbine, Ld. C. Rodrigues, J. Lapa-Guimaraes, E. S. Kamimura, C. H. Corassin, and C. AFd. Oliveira (2019). Application of silver nanoparticles in food packages: a review. Food Sci. Technol. 39, 793–802.

    Article  Google Scholar 

  2. V. Bansal, D. Rautaray, A. Ahmad, and M. Sastry (2004). Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14, 3303–3305.

    Article  CAS  Google Scholar 

  3. K. AbdelRahim, S. Y. Mahmoud, A. M. Ali, K. S. Almaary, A.E.-Z.M. Mustafa, and S. M. Husseiny (2017). Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 24, 208–16.

    Article  CAS  PubMed  Google Scholar 

  4. A. C. Sergio Almeida, E. A. Nazario Franco, F. M. Peixoto, K. L. Ferreira Pessanha, and N. R. Melo (2015). Application of nanotechnology in food packaging. Polimeros-Ciencia E Tecnologia. 25, 89–97.

    CAS  Google Scholar 

  5. Y. Echegoyen and C. Nerín (2013). Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 62, 16–22.

    Article  CAS  PubMed  Google Scholar 

  6. C. Silvestre, D. Duraccio, and S. Cimmino (2011). Food packaging based on polymer nanomaterials. Progress Polym. Sci. 36, 1766–1782.

    Article  CAS  Google Scholar 

  7. H. Barabadi (2017). Nanobiotechnology: a promising scope of gold biotechnology. Cell. Mol. Biol. 63, 3–4.

    Article  PubMed  Google Scholar 

  8. R. Pourrahim, S. Farzadfar, and A. Golnaraghi, Nanotechnology and Agriculture (Sepehr Co., Tehran, 2008).

    Google Scholar 

  9. A. P. Alivisatos (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science. 271, 933–937.

    Article  CAS  Google Scholar 

  10. A. N. Shipway, E. Katz, and I. Willner (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem. 1, 18–52.

    Article  CAS  PubMed  Google Scholar 

  11. A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, et al. (2002). Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 124, 12108–12109.

    Article  CAS  PubMed  Google Scholar 

  12. L. Addadi and S. Weiner (1992). Control and design principles in biological mineralization. Angew. Chem. Int. Ed. Eng. 31, 153–169.

    Article  Google Scholar 

  13. S. Mann and G. A. Ozin (1996). Synthesis of inorganic materials with complex form. Nature. 382, 313–318.

    Article  CAS  Google Scholar 

  14. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, A. R. Golnaraghi-Ghomi, et al. (2020). Emerging theranostic silver nanomaterials to combat colorectal cancer: a systematic review. J. Clust. Sci. 31, 311–321.

    Article  CAS  Google Scholar 

  15. N. Durán, P. D. Marcato, R. D. Conti, O. L. Alves, F. Costa, and M. Brocchi (2010). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 21, 949–959.

    Article  Google Scholar 

  16. X. Wei, M. Luo, W. Li, L. Yang, X. Liang, L. Xu, et al. (2012). Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol. 103, 273–278.

    Article  CAS  PubMed  Google Scholar 

  17. P. Sonkusre, R. Nanduri, P. Gupta, and S. S. Cameotra (2014). Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. Nanomed. Nanotechnol. 5, 1.

    Google Scholar 

  18. N. Pantidos and L. E. JJo. N. Horsfall (2014). Nanotechnology. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Nanomed. Nanotechnol. 5, 5.

    Google Scholar 

  19. A. R. Golnaraghi-Ghomi, N. Asasian-Kolur, S. Sharifian, and A. Golnaraghi (2020). Biosorpion for sustainable recovery of precious metals from wastewater. J. Environ. Chem. Eng. 8, 103996.

    Article  CAS  Google Scholar 

  20. S. Sōmiya, N. Yamamoto, and H. Yanagida, Science and Technology of Zirconia (American Ceramic Society, Columbus, 1986).

    Google Scholar 

  21. R. C. Garvie, R. Hannink, and R. Pascoe (1975). Ceramic steel? Nature. 258, 703–704.

    Article  CAS  Google Scholar 

  22. H. Xu, D.-H. Qin, Z. Yang, and H.-L. Li (2003). Fabrication and characterization of highly ordered zirconia nanowire arrays by sol–gel template method. Mater. Chem. Phys. 80, 524–528.

    Article  CAS  Google Scholar 

  23. P. D. Southon, J. R. Bartlett, J. L. Woolfrey, and B. Ben-Nissan (2002). Formation and characterization of an aqueous zirconium hydroxide colloid. Chem. Mater. 14, 4313–4319.

    Article  CAS  Google Scholar 

  24. H. Raihani (1994). Zirconia formation by reaction of zirconium sulfate in molten alkali-metal nitrates or nitrites. J. Mater. Chem. 4, 1331–1336.

    Article  Google Scholar 

  25. H.-J. Noh, D.-S. Seo, H. Kim, and J.-K. Lee (2003). Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Mater. Lett. 57, 2425–2431.

    Article  CAS  Google Scholar 

  26. D. R. Lovley, J. F. Stolz, G. L. Nord, and E. J. Phillips (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 330, 252–254.

    Article  CAS  Google Scholar 

  27. S. V. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, and S. J. Clarson (2003). Bioinspired synthesis of new silica structures. Chem Commun. https://doi.org/10.1039/b302056h.

    Article  Google Scholar 

  28. F. N. Spagnoletti, C. Spedalieri, F. Kronberg, and R. J. Giacometti (2019). Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manag. 231, 457–466.

    Article  CAS  Google Scholar 

  29. F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, and A. I. El-Batal (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial. Pathogenesis. 122, 108–116.

    Article  CAS  PubMed  Google Scholar 

  30. S. A. Shafiq, R. H. Al-Shammari, H. Z. Majeed, and A. Studies (2016). Study of Biosynthesis silver nanoparticles by Fusarium graminaerum and test their antimicrobial activity. Int. J. Innov. Appl. Stud. 15, 43.

    CAS  Google Scholar 

  31. J. Kisała, K. Hęclik, A. Masłowska, M. Celuch, and D. Pogocki (2017). Natural environments for nanoparticles synthesis of metal, metal oxides, core–shell and bimetallic systems. Stud. Nat. Prod. Chem. 52, 1–67.

    Article  Google Scholar 

  32. M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. J. M. Poinern (2015). Green synthesis of metallic nanoparticles via biological entities. Materials. 8, 7278–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. R. Golnaraghi-Ghomi, M. Mohammadi-Khanaposhti, H. Vahidi, F. Kobarfard, M. Ameri Shah-Reza, and H. Barabadi (2019). Fungus-mediated extracellular biosynthesis and characterization of zirconium nanoparticles using standard penicillium species and their preliminary bactericidal potential: a novel biological approach to nanoparticle synthesis. IJPR. 18, 2101.

    PubMed  PubMed Central  Google Scholar 

  34. P. Shabanzadeh, R. Yusof, and K. J. R. A. Shameli (2015). Modeling of biosynthesized silver nanoparticles in Vitex negundo L. extract by artificial neural network. RSC Adv. 5, 87277–85.

    Article  CAS  Google Scholar 

  35. A. Thapliyal, R. K. Khar, and A. J. C. N. Chandra (2018). Artificial neural network modelling of green synthesised silver nanoparticles in bentonite/starch bio-nanocomposite. Curr. Nanosci. 14, 239–251.

    Article  CAS  Google Scholar 

  36. P. Shabanzadeh, R. Yusof, and K. Shameli (2015). Artificial neural network for modeling the size of silver nanoparticles’ prepared in montmorillonite/starch bionanocomposites. J. Ind. Eng. Chem. 24, 42–50.

    Article  CAS  Google Scholar 

  37. P. Shabanzadeh, N. Senu, K. Shameli, and M. M. Tabar (2013). Artificial intelligence in numerical modeling of silver nanoparticles prepared in montmorillonite interlayer space. J. Chem.

  38. M. B. A. Rahman, N. Chaibakhsh, M. Basri, A. B. Salleh, and R. N. Rahman (2009). Application of artificial neural network for yield prediction of lipase-catalyzed synthesis of dioctyl adipate. Appl. Biochem. Biotechnol. 158, 722–735.

    Article  PubMed  CAS  Google Scholar 

  39. S. Hamedi, S. A. Shojaosadati, S. Shokrollahzadeh, and S. Hashemi-Najafabadi (2014). Biotechnology. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J. Microbiol. Biotechnol. 30, 693–704.

    Article  CAS  PubMed  Google Scholar 

  40. R. Y. Sweeney, C. Mao, X. Gao, J. L. Burt, A. M. Belcher, G. Georgiou, et al. (2004). Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 11, 1553–1559.

    Article  CAS  PubMed  Google Scholar 

  41. H. Fernández-Llamosas, L. Castro, M. L. Blázquez, E. Díaz, and M. J. M. Carmona (2016). Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microbial. Cell Fact. 15, 1–10.

    Article  CAS  Google Scholar 

  42. C. Buerth, C. J. Heilmann, F. M. Klis, C. G. de Koster, J. F. Ernst, and D. J. M. Tielker (2011). Growth-dependent secretome of Candida utilis. Microbiol. Soc. 157, 2493–2503.

    Article  CAS  Google Scholar 

  43. E. S. Shahid, M. Salari, M. Ehteshami, and S. N. Sheibani (2020). Artificial neural network (ANN) modeling of cavitation mechanism by ultrasonic irradiation for cyanobacteria growth inhibition. J. Environ. Treat. Tech. 8, 625–633.

    Google Scholar 

  44. P. Shabanzadeh, R. Yusof, and K. Shameli (2015). Modeling of biosynthesized silver nanoparticles in Vitex negundo L. extract by artificial neural network. RSC Adv. 5, 87277–85.

    Article  CAS  Google Scholar 

  45. O. Roeva (2012). Real-World Applications of Genetic Algorithms. BoD–Books on Demand.

  46. O. M. Darwesh, I. A. Matter, M. F. Eida, H. Moawad, and Y.-K.J.A.S. Oh (2019). Influence of nitrogen source and growth phase on extracellular biosynthesis of silver nanoparticles using cultural filtrates of Scenedesmus obliquus. Appl. Sci. 9, 1465.

    Article  CAS  Google Scholar 

  47. T. Ahmad, I. A. Wani, N. Manzoor, J. Ahmed, A. M. J. C. Asiri, and S. B. Biointerfaces (2013). Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B. 107, 227–234.

    Article  CAS  Google Scholar 

  48. D. Lahiri, M. Nag, H. I. Sheikh, T. Sarkar, H. A. Edinur, S. Pati, et al. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front. Microbiol. 12, 1.

    Article  Google Scholar 

  49. M. Guilger-Casagrande and Rd. Lima (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00287.

    Article  PubMed  PubMed Central  Google Scholar 

  50. M. Rostamizadeh and S. M. H. Rizi (2012). Predicting gas flux in silicalite-1 zeolite membrane using artificial neural networks. J. Membr. Sci. 403, 146–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank School of Pharmacy, Shahid Beheshti University of Medical Sciences (Tehran, Iran) for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mohammadi-Khanaposhti, F. Kobarfard or H. Barabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golnaraghi-Ghomi, A.R., Mohammadi-Khanaposhti, M., Sokhansanj, A. et al. Artificial Neural Network Modeling of Fungus-Mediated Extracellular Biosynthesis of Zirconium Nanoparticles Using Standard Penicillium spp.. J Clust Sci 33, 1907–1921 (2022). https://doi.org/10.1007/s10876-021-02111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02111-7

Keywords

Navigation