Skip to main content
Log in

Fluxional Bonds in Tubular Molecular Rotors B3-[Ta@B18] and B4-[Ta@B18]+ in 18-Electron Configurations

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Boron and metal-doped boron nanoclusters possess unique fluxional behaviors in dynamics. Detailed bonding analyses performed in this work indicate that, similar to the experimentally observed B2-[Ta@B18] (1), the theoretically predicted tubular molecular rotors B3-[Ta@B18] (2) and B4-[Ta@B18]+ (3) possess typical fluxional 4c–2e and 3c–2e σ-bonds atop the Ta-centered [Ta@B18] double-ring tube between the Bn unit (n = 3, 4) and upper B9 ring, unveiling the fluxional bonding nature of the Bn-[Ta@B18]q complex series (n = 2–4, q = n − 3) which follow the 18-electron rule in different charge states. Chiral conversions via pseudo-rotations are observed in the fluxional processes between the Bn unit (n = 3, 4) and Ta-centered [Ta@B18] double-ring tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. A. Cotton, G. Wilkinson, C. A. Murrillo, and M. Bochmann Advanced Inorganic Chemistry, 6th ed (Wiley, New York, 1999).

    Google Scholar 

  2. L. S. Wang (2016). Int. Rev. Phys. Chem.35, 69.

    Article  Google Scholar 

  3. W. L. Li, X. Chen, T. Jian, T. T. Chen, J. Li, and L. S. Wang (2017). Nat. Rev. Chem.1, 0071.

    Article  Google Scholar 

  4. H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater.2, 827.

    Article  CAS  Google Scholar 

  5. W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem.2, 202.

    Article  Google Scholar 

  6. H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem.6, 727.

    Article  CAS  Google Scholar 

  7. Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2015). ACS Nano9, 754.

    Article  Google Scholar 

  8. Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2016). J. Chem. Phys.144, 064307.

    Article  Google Scholar 

  9. Q. Chen, T. T. Chen, H. R. Li, X. Y. Zhao, W. J. Chen, H. J. Zhai, S. D. Li, and L. S. Wang (2019). Nanoscale11, 9698.

    Article  CAS  Google Scholar 

  10. W. J. Tian, Q. Chen, H. R. Li, M. Yan, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys.18, 9922.

    Article  CAS  Google Scholar 

  11. Q. Chen, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys.18, 14186.

    Article  CAS  Google Scholar 

  12. Q. Chen, H. R. Li, C. Q. Miao, Y. J. Wang, H. G. Lu, Y. W. Mu, G. M. Ren, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys.18, 11610.

    Article  CAS  Google Scholar 

  13. Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Ed.54, 8160.

    Article  CAS  Google Scholar 

  14. E. Oger, N. R. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Angew. Chem. Int. Ed.46, 8503.

    Article  CAS  Google Scholar 

  15. M. R. Fagiani, X. W. Song, P. Petkov, S. Debnath, S. Gewinner, W. Schöllkopf, T. Heine, A. Fielicke, and K. R. Asmis (2017). Angew. Chem. Int. Ed.56, 501.

    Article  CAS  Google Scholar 

  16. I. A. Popov, T. Jian, G. V. Lopez, A. I. Boldyrev, and L. S. Wang (2015). Nat. Commun.6, 8654.

    Article  CAS  Google Scholar 

  17. T. Jian, W. L. Li, I. A. Popov, G. V. Lopez, X. Chen, A. I. Boldyrev, J. Li, and L. S. Wang (2016). J. Chem. Phys.144, 154310.

    Article  Google Scholar 

  18. T. Jian, W. L. Li, X. Chen, T. T. Chen, G. V. Lopez, J. Li, and L. S. Wang (2016). Chem. Sci.7, 7020.

    Article  CAS  Google Scholar 

  19. W. L. Li, T. Jian, X. Chen, H. R. Li, T. T. Chen, X. M. Luo, S. D. Li, J. Li, and L. S. Wang (2017). Chem. Commun.53, 1587.

    Article  CAS  Google Scholar 

  20. H. R. Li, H. Liu, X. X. Tian, W. Y. Zan, Y. W. Mu, H. G. Lu, J. Li, Y. K. Wang, and S. D. Li (2017). Phys. Chem. Chem. Phys.19, 27025.

    Article  CAS  Google Scholar 

  21. M. Yan, H. R. Li, X. Y. Zhao, X. Q. Lu, Y. W. Mu, H. G. Lu, and S. D. Li (2019). J. Comput. Chem.40, 966.

    Article  CAS  Google Scholar 

  22. M. Yan, H. R. Li, X. X. Tian, Y. W. Mu, H. G. Lu, and S. D. Li (2019). J. Comput. Chem.40, 1227.

    Article  CAS  Google Scholar 

  23. X. Y. Zhao, X. M. Luo, X. X. Tian, H. G. Lu, and S. D. Li (2019). J. Clust. Sci.30, 115.

    Article  CAS  Google Scholar 

  24. Y. J. Wang, X. Y. Zhao, Q. Chen, H. J. Zhai, and S. D. Li (2015). Nanoscale7, 16054.

    Article  Google Scholar 

  25. G. MartÍnez-Guajardo, A. P. Sergeeva, A. I. Boldyrev, T. Heine, J. M. Ugalde, and G. Merino (2011). Chem. Commun.47, 6242.

    Article  Google Scholar 

  26. Y. J. Wang, X. R. You, Q. Chen, L. Y. Feng, K. Wang, T. Ou, X. Y. Zhao, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys.18, 15774.

    Article  CAS  Google Scholar 

  27. Y. G. Yang, D. M. Jia, Y. J. Wang, H. J. Zhai, Y. Man, and S. D. Li (2017). Nanoscale9, 1443.

    Article  CAS  Google Scholar 

  28. C. Adamo and V. Barone (1999). J. Chem. Phys.110, 6158.

    Article  CAS  Google Scholar 

  29. M. J. Frisch, et al. Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford, 2013).

    Google Scholar 

  30. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys.72, 650.

    Article  CAS  Google Scholar 

  31. D. Feller (1996). J. Comput. Chem.17, 1571.

    Article  CAS  Google Scholar 

  32. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. S. Sun, and V. Gurumoorthi (2007). J. Chem. Inf. Model.47, 1045.

    Article  CAS  Google Scholar 

  33. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys.10, 5207.

    Article  CAS  Google Scholar 

  34. V. N. Staroverov and E. R. Davidson (2000). J. Am. Chem. Soc.122, 7377.

    Article  CAS  Google Scholar 

  35. S. G. Semenov and M. V. Makarova (2012). Russ. J. Gen. Chem.82, 1527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21720102006 to S.-D. Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Dian Li.

Ethics declarations

Conflict of interest

All the authors of this paper have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HR., Zhang, M., Yan, M. et al. Fluxional Bonds in Tubular Molecular Rotors B3-[Ta@B18] and B4-[Ta@B18]+ in 18-Electron Configurations. J Clust Sci 31, 331–336 (2020). https://doi.org/10.1007/s10876-019-01646-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01646-0

Keywords

Navigation