Skip to main content
Log in

Pharmacological and Larvicidal Potential of Green Synthesized Silver Nanoparticles Using Carmona retusa (Vahl) Masam Leaf Extract

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Mosquito control is facing a challenge worldwide, due to ineffectiveness of chemical insecticides. Identification of novel and ecofriendly insecticides is the need of the hour. In the present study mosquito control efficacy, antioxidants and anti-cancerous potential of silver nanoparticle conjugated with Carmona retusa (Vahl) Masam nanoparticles. Synthesized nanoparticles had UV absorption maximum at 420 nm, size ranging between 20 and 40 nm based of TEM, has cubic structure, C–H bending and Ag Metal bands. Results show high free radical scavenging ability of C. retusa derived silver nanoparticles as evidenced by DPPH radical and H2O2 radical assay. C. retusa derived nanoparticles produce 80% inhibition in MCF-7 cell line at concentration of 500 μg/ml. High larvicidal activity with LC50 values of 116.681 ppm for Anopheles stephensi, 198.766 ppm for Aedes aegypti, and 83.553 ppm for Culex quinquefasciatus were observed. Based on the findings of the study we suggest that C. retusa plant mediated AgNPs has anticancerous and mosquito larvicidal property and could be bioprospected for drug development and mosquito control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Kaviya, J. Santhanalakshmi, and B. Viswanathan (2011). J. Nanotechnol. 5, 1.

    Article  CAS  Google Scholar 

  2. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496.

    Article  CAS  PubMed  Google Scholar 

  3. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007). Nanotechnology 18, 105104.

    Article  CAS  Google Scholar 

  4. C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K. Tam, J.-F. Chiu, and C.-M. Che (2007). J. Biol. Inorg. Chem. 12, 527.

    Article  CAS  PubMed  Google Scholar 

  5. M. A. Albrecht, C. W. Evan, and C. L. Raston (2006). Green Chem. 8, 417.

    Article  CAS  Google Scholar 

  6. P. Vivekanandhan, S. Deepa, E. J. Kweka, and M. S. Shivakumar (2018). J. Clust. Sci. https://doi.org/10.1007/s10876-018-1423-1.

    Article  Google Scholar 

  7. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic (2002). Nature 420, 800.

    Article  CAS  PubMed  Google Scholar 

  8. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.

    Article  CAS  PubMed  Google Scholar 

  9. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1.

    Article  CAS  Google Scholar 

  10. M. Gorbe, R. Bhat, E. Aznar, F. Sancenon, M. D. Marcos, F. J. Herraiz, J. Prohens, A. Venkataraman, and R. Martinez-Manez (2016). Materials 9, 325.

    Article  CAS  PubMed Central  Google Scholar 

  11. L. S. De Padua, G. C. Lugod, and J. V. Pancho (1980). UPLB Philippines 1, 21.

    Google Scholar 

  12. WHO (2016). Zika virus. Fact sheet N°1. Updated January 2016.

  13. G. Benelli and J. Beier (2017). Acta Trop. 174, 91.

    Article  PubMed  Google Scholar 

  14. G. Benelli and D. Romano (2017). Entomol. Gen. 36, 309. https://doi.org/10.1127/entomologia/2017/0496.

    Article  Google Scholar 

  15. World Health Organization. (2017). Geniva. www.Who.int/mediacentre/factsheets/fs387/en/2017. Accessed on 22/02/2018.

  16. G. Benelli and M. F. Duggan (2018). Acta. Trop. 182, 80.

    Article  PubMed  Google Scholar 

  17. WHO. (1999). Geneva: World Health Organization. http://www.who.int/inf-fs/en/fact094.html.

  18. G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747.

    Article  PubMed  Google Scholar 

  19. L. Bernhard, P. Bernhard, and P. Magnussen (2003). Physiotherapy. 89, 743.

    Article  Google Scholar 

  20. World Health Organization. (2002). Geneva. www.who.int/whr/2002/en/.

  21. World Health Organization. (2016). Geneva. www.who.int/whopes/en/2016. edn 2.

  22. I. Mahmood, S. R. Imadi, K. Shazadi, A. Gul, K. R. Hakeem, K. Hakeem, M. Akhtar, and S. Abdullah (2016). Cham 1, 253.

    Google Scholar 

  23. N. Macagnan, C. F. Rutkoski, C. Kolcenti, G. V. Vanzetto, L. P. Macagnan, P. F. Sturza, P. A. Hartmann, and M. T. Hartmann (2017). Environ. Sci. Pollut. Res. 24, 20699.

    Article  CAS  Google Scholar 

  24. G. Benelli (2015). Parasitol. Res. 114, 2801.

    Article  PubMed  Google Scholar 

  25. P. Vivekanandhan, R. Venkatesan, G. Ramkumar, S. Karthi, S. Senthil-Nathan, and M. S. Shivakumar (2018). Int. J. Environ. Res. Pub. Health 15, 388. https://doi.org/10.3390/ijerph15020388.

    Article  Google Scholar 

  26. G. Benelli (2016). Enzyme Microb. Technol. 95, 58.

    Article  CAS  PubMed  Google Scholar 

  27. P. Sowndarya, G. Ramkumar, and M. S. Shivakumar (2017). Artif. Cells Nanomed. Biotechnol. 45, 1490.

    Article  CAS  PubMed  Google Scholar 

  28. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76.

    Article  CAS  PubMed  Google Scholar 

  29. P. Molyneux (2004). J. Sci. Technol. 26, 211.

    CAS  Google Scholar 

  30. B. Halliwell, J. M. Gutteridge, and O. I. Aruoma (1987). Anal. Biochem. 165, 215.

    Article  CAS  PubMed  Google Scholar 

  31. T. Mosmann (1983). J. Immunol. Methods 65, 55.

    Article  CAS  PubMed  Google Scholar 

  32. World Health Organization. (2005). Geneva. www.WHO/CDS/WHOPES/GCDPP/13.

  33. W. S. Abbott (1925). J. Ecol. Entomol. 18, 265.

    Article  CAS  Google Scholar 

  34. B. Kumar, K. Smita, L. Cumbal, and Y. Angulo (2015). J. Mol. Liq. 211, 476.

    Article  CAS  Google Scholar 

  35. R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, and K. S. Kaveri Kannan (2012). Process Biochem. 47, 2405.

    Article  CAS  Google Scholar 

  36. S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). Environ. Sci. Pollut. Res. 24, 17347.

    Article  CAS  Google Scholar 

  37. N. J. Reddy, D. N. Vali, M. Rani, and S. S. Rani (2014). Mater. Sci. Eng. C 34, 115.

    Article  CAS  Google Scholar 

  38. P. C. Nagajyothi, S. J. Cha, I. J. Yang, T. V. Sreekanth, K. J. Kim, and H. M. Shin (2015). J. Photochem. Photobiol. B 146, 10.

    Article  CAS  PubMed  Google Scholar 

  39. R. L. Baldwin (1968). A Rev. J. Dairy Sci. 51, 104.

    Article  CAS  Google Scholar 

  40. C. S. Ryu, C. H. Kim, S. Y. Lee, K. S. Lee, K. J. Choung, G. Y. Song, B. H. Kim, S. Y. Ryu, H. S. Lee, and S. K. Kim (2012). Food Chem. 132, 333.

    Article  CAS  PubMed  Google Scholar 

  41. G. Kiran, M. Sarangapani, T. Gouthami, and A. R. Narsimha Reddy (2013). Toxicol. Environ. Chem. 95, 367.

    Article  CAS  Google Scholar 

  42. G. C. Yen and H. Y. Chen (1995). J. Agric. Food Chem. 43, 27.

    Article  CAS  Google Scholar 

  43. K. Gopinath, M. Chinnadurai, N. P. Devi, K. Bhakyaraj, S. Kumaraguru, T. Baranisri, A. Sudha, M. Zeeshan, A. Arumugam, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, and G. Benelli (2017). J. Clust. Sci. 28, 621.

    Article  CAS  Google Scholar 

  44. G. Benelli (2018). Environ. Sci. Pollut. Res. Int. 25, 12329–12341. https://doi.org/10.1007/s11356-018-1850-4.

    Article  CAS  PubMed  Google Scholar 

  45. G. Benelli (2018). Acta Trop. 178, 73. https://doi.org/10.1016/j.actatropica.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  46. C. G. Athanassiou, N. G. Kavallieraros, G. Benelli, D. Losic, P. Usha Rani, and N. Desneux (2018). J. Pest Sci. 91, 1.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by University Grants Commission-Rajiv Gandhi National Fellowship Programme (Sanction Number: F1-17.1/2016-17/RGNF-2015-17-SC-TAM-26510) for their financial support. The authors thank Department of Botany, School of life Sciences, Periyar University, Salem, Tamil Nadu, India, for infrastructural support and KIRND Institute of Research and Development Pvt Ltd, Tiruchirappalli, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuppusamy Selvam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, R., Shivakumar, M.S., Senthil Nathan, S. et al. Pharmacological and Larvicidal Potential of Green Synthesized Silver Nanoparticles Using Carmona retusa (Vahl) Masam Leaf Extract. J Clust Sci 29, 1243–1253 (2018). https://doi.org/10.1007/s10876-018-1443-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1443-x

Keywords

Navigation