Skip to main content
Log in

Nanocarbon Effect of Smoking Biofilms for Effective Control

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Biofilm is an industrial, medical and environmental nuisance. Inhibiting biofilm costs several billion dollars each year in the United States alone. Research to inhibit biofouling/biofilm has offered various solutions, yet no permanent remedy. For the first time a simple, straightforward and effective ethanopharmacological method to rid biofilm using fumigation is reported. Fumigation is an unsophisticated technology, we demonstrate the effectiveness of fumigation for killing biofilm of pathogenic bacteria. The fumigation of surfaces prior to bacterial exposure, leading to antifouling surfaces was also demonstrated. The nanocarbon aspect of the fumigation effect on the biofilm is discussed. Although, demonstrated with turmeric smoke alone, any potent source with potent antibacterial activity can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. K. Chunekar and B. Nighantu (1993). Varanasi 43, 102.

    Google Scholar 

  2. J. L. N. Sastry, Illustrated Dravyaguna Vijnana, 2nd edn. (Chaukhambha Orientalia, Varanasi, India, 2005), pp. 513–518.

  3. D. Vijnana, I. Vol and P. P. Sharma, Varanasi, Edition (2006).

  4. P. Paranjpe, Herbs for Beauty. (Chaukhambha Sanskrit Pratishthan, Delhi, India, 2001), pp. 95–96.

  5. A. J. Ruby, G. Kuttan, K. D. Babu, K. Rajasekharan, and R. Kuttan (1995). Cancer Lett. 94, (1), 79.

    Article  CAS  PubMed  Google Scholar 

  6. R. Selvam, L. Subramanian, R. Gayathri, and N. Angayarkanni (1995). J. Ethnopharmacol. 47, (2), 59.

    Article  CAS  PubMed  Google Scholar 

  7. M. Ohshiro, M. Kuroyanagi, and A. Ueno (1990). Phytochemistry 29, (7), 2201.

    Article  CAS  Google Scholar 

  8. K. R. Kirtikar Indian Medicinal Plants, vol. 4 (Bishen Singh Mahendra Pal Singh, Dehradun, 1918).

    Book  Google Scholar 

  9. K. Polasa, T. Raghuram, T. P. Krishna, and K. Krishnaswamy (1992). Mutagenesis 7, (2), 107.

    Article  CAS  PubMed  Google Scholar 

  10. V. Goud, K. Polasa, and K. Krishnaswamy (1993). Plant Foods Hum. Nutr. 44, (1), 87.

    Article  CAS  PubMed  Google Scholar 

  11. B. Thimmayamma, P. Rau, and G. Radhaiah Indian J. (Nutr, Diet, 1983).

    Google Scholar 

  12. S. Prasad, A. K. Tyagi, and B. B. Aggarwal (2011). Cancer Res. Treat. 46, (1), 2–18.

    Article  CAS  Google Scholar 

  13. S. Chun, M. Muthu, E. Gansukh, P. Thalappil, and J. Gopal (2016). Sci. Rep. 6, 35586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. M. Donlan (2002). Emerg. Infect. Dis. 8, (9), 881.

    Article  PubMed  PubMed Central  Google Scholar 

  15. J. Gopal, R. P. George, P. Muraleedharan, S. Kalavathi, S. Banerjee, R. Dayal, and H. Khatak (2007). J. Mater. Sci. 42, (13), 5152.

    Article  CAS  Google Scholar 

  16. J. Gopal, P. Muraleedharan, H. Sarvamangala, R. George, R. Dayal, B. Tata, H. Khatak, and K. Natarajan (2008). Biofouling 24, (4), 275.

    Article  PubMed  Google Scholar 

  17. P. Muraleedharan, J. Gopal, R. George, and H. Khatak (2003). Curr. Sci. 84, 197.

    CAS  Google Scholar 

  18. H.-C. Flemming, J. Wingender, T. Griebe, and C. Mayer Biofilms: recent advances in their study and control, vol. 19 (Harwood Academic Publishers, Amsterdam, 2000).

    Book  Google Scholar 

  19. D. M. Yebra, S. Kiil, and K. Dam-Johansen (2004). Prog. Org. Coat. 50, (2), 75.

    Article  CAS  Google Scholar 

  20. K. Thomas and S. Brooks (2010). Biofouling 26, (1), 73–88.

    Article  CAS  PubMed  Google Scholar 

  21. S. J. Brooks and M. Waldock, Copper biocides in the marine environment, in T. Arai, H. Harino, M. Ohji, and W. Langston (eds) Ecotoxicology of Antifouling Biocides (Springer, Tokyo, 2009), pp. 413–428.

  22. S. F. Guo, H. P. Lee, K. C. Chaw, J. Miklas, S. L. M. Teo, G. H. Dickinson, W. R. Birch, and B. C. Khoo (2011). Biofouling 27, (2), 185–192.

    Article  PubMed  Google Scholar 

  23. R. F. Brady Jr. (2001). Prog. Org. Coat. 43, (1–3), 188.

    Article  CAS  Google Scholar 

  24. G. Swain (1999). J. Prot. Coat. Linings 16, 26.

    Google Scholar 

  25. C. Chou Potential Biofouling Strategies Against Blue Mussel (Mytilus Edulis), Infestation in a Cooling Water System (Department of Fisheries & Oceans, Science Branch, Marine Environmental Sciences Division, Bedford Institute of Oceanography, Dartmouth, 1999).

    Google Scholar 

  26. M. Salta, J. A. Wharton, Y. Blache, K. R. Stokes, and J. F. Briand (2013). Environ. Microbiol. 15, (11), 2879.

    PubMed  Google Scholar 

  27. H. Kanematsu and D. Barry, New Evaluation Techniques for Biofilm in Materials Science. In H. Kanematsu and D. Barry (eds) Biofilm and Materials Science (Springer, Cham, 2015), pp. 187–192.

  28. M. Friedman, B. Lakin, and R. Moore (2012). Opflow 38, (8), 10.

    Article  Google Scholar 

  29. R. Miller, M. Friedman, D. Koci, and R. Moore (2013). Opflow 39, (9), 10.

    Article  Google Scholar 

  30. I. Omae (2003). Chem. Rev. 103, (9), 3431.

    Article  CAS  PubMed  Google Scholar 

  31. J. Gopal, B. Tata, R. George, P. Muraleedharan, and R. Dayal (2008). Surf. Eng. 24, (6), 447.

    Article  CAS  Google Scholar 

  32. M. Feoktistova, P. Geserick, and M. Leverkus (2016). Cold Spring Harbor Protoc. 2016, (4), pdb. prot087379.

    Article  Google Scholar 

  33. V. Govindarajan and W. H. Stahl (1980). Crit. Rev. Food Sci. Nutr. 12, (3), 199–301.

    Article  CAS  PubMed  Google Scholar 

  34. C. Araujo and L. Leon (2001). Mem. Inst. Oswaldo Cruz. 96, (5), 723–728.

    Article  CAS  PubMed  Google Scholar 

  35. S. Burt (2004). Int. J. Food Microbiol. 94, (3), 223.

    Article  CAS  PubMed  Google Scholar 

  36. H. Hayakawa, Y. Minaniya, K. Ito, Y. Yamamoto, and T. Fukuda (2011). Am. J. Plant Sci. 2, (02), 111.

    Article  CAS  Google Scholar 

  37. P. Lai and J. Roy (2004). Curr. Med. Chem. 11, (11), 1451.

    Article  CAS  PubMed  Google Scholar 

  38. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal (2006). Life Sci. 78, (18), 2081–2087.

    Article  CAS  PubMed  Google Scholar 

  39. T. Rudrappa and H. P. Bais (2008). J. Agric. Food Chem. 56, (6), 1955.

    Article  CAS  PubMed  Google Scholar 

  40. S.-Y. Teow, K. Liew, S. A. Ali, A. S.-B. Khoo, and S.-C. Peh (2016). J. Trop. Med. 2016, 10.

    Article  Google Scholar 

  41. M. S. Mauter and M. Elimelech (2008). Environ. Sci. Technol. 42, (16), 5843.

    Article  CAS  PubMed  Google Scholar 

  42. J. Gopal, M. Muthu, and S. Chun (2016). PCCP 18, (28), 18670.

    Article  CAS  PubMed  Google Scholar 

  43. A. Al-Jumaili, S. Alancherry, K. Bazaka, and M. V. Jacob (2017). Materials 10, (9), 1066.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the KU Research Professor Program of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikandan Muthu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthonydhason, V., Gopal, J., Chun, S. et al. Nanocarbon Effect of Smoking Biofilms for Effective Control. J Clust Sci 29, 541–548 (2018). https://doi.org/10.1007/s10876-018-1394-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1394-2

Keywords

Navigation