Skip to main content
Log in

Enhanced Photocatalytic Degradation of Synthetic Dyes and Industrial Dye Wastewater by Hydrothermally Synthesized G–CuO–Co3O4 Hybrid Nanocomposites Under Visible Light Irradiation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

To enhance the degradation of colour and chemical oxygen demand using photocatalytic activity, Graphene–CuO–Co3O4 hybrid nanocomposites were synthesized using an in situ surfactant free facile hydrothermal method. The photocatalytic degradation of synthetic anionic dyes, methyl orange (MO) and Congo red (CR), and industrial textile wastewater dyes under visible light irradiation was evaluated. The synthesized nanocomposite was characterized structurally and morphologically using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscope, and Fourier transform infrared spectroscopy. Evaluation of the colour indicated complete removal at 15 min of irradiation for the MO and CR dyes, with 99% degradation efficiency. The reaction time for the primary effluent wastewater dye was 60 min for 81% dye removal. In contrast, a longer reaction time was required to meet the national discharge regulation for the raw wastewater dye, 300 min for 60% dye removal. The mechanism for dye degradation using the Graphene–CuO–Co3O4 hybrid nanocomposite was elucidated using the Langmuir–Hinshelwood model, and the rate constant and half-life of the degradation process were calculated. The results demonstrate that photocatalytic degradation using a hybrid nanocomposite and visible light irradiation is a sustainable alternative technology for removing colour from wastewater dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. A. Ahmad and B. H. Hameed (2010). Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. J. Hazard. Mater. 173, 487–493.

    Article  CAS  Google Scholar 

  2. American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater, 21st ed (American Public Health Association, Washington, DC, 2005).

    Google Scholar 

  3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271.

    Article  CAS  Google Scholar 

  4. N. Azbar, T. Yonar, and K. Kestioglu (2004). Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55, 35–43.

    Article  CAS  Google Scholar 

  5. X. Bai, L. Wang, and Y. Zhu (2012). Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization. ACS Catal. 2, 2769–2778.

    Article  CAS  Google Scholar 

  6. E. Barrera, I. Gonzalez, and T. Viveros (1998). A new cobalt oxide electrodeposit bath for solar absorbers. Sol. Energy Mater. Sol. Cells 51, 69–82.

    Article  CAS  Google Scholar 

  7. E. Bi, H. Chen, X. Yang, W. Peng, M. Gratzel, and L. Han (2014). A quasi core-shell nitrogen- doped graphene/cobalt sulfide conductive catalyst for highly efficient dye- sensitized solar cells. Energy Environ. Sci. 7, 2637–2641.

    Article  CAS  Google Scholar 

  8. Y. Bu, Z. Chen, W. Li, and B. Hou (2013). Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl. Mater. Interfaces 5, 12361–12368.

    Article  CAS  Google Scholar 

  9. O. T. Can, M. Kobya, E. Demirbas, and M. Bayramoglu (2006). Treatment of the textile wastewater by combined electrocoagulation. Chemosphere 62, 181–187.

    Article  CAS  Google Scholar 

  10. H. Chen, G. Jhao, and Y. Liu (2013). Low-temperature solution synthesis of CuO nanorods with thin diameter. Mater. Lett. 93, 60–63.

    Article  CAS  Google Scholar 

  11. X. K. Chen, J. C. Irwin, and J. P. Franck (1995). Evidence for a strong spin-phonon interaction in cupric oxide. Phys. Rev. B 52, R13130.

    Article  Google Scholar 

  12. Y. S. Chen and P. V. Kamat (2014). Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc. 136, 6075–6082.

    Article  CAS  Google Scholar 

  13. Datasheet of American Elements’ catalog. Available http://www.americanelements.com/copper-ii-ethoxide-2850-65-9.html. American Elements is a US Registered Trademark. Accessed 01 Jan 1998.

  14. R. S. Dave and A. R. Patel (2010). Photochemical and photocatalytic of cypermethrin under UV radiation. Der Pharma Chem. 2, 152–158.

    CAS  Google Scholar 

  15. R. Esmaeli, A. H. Hassani, A. Eslami, M. Ahmadi Moghadam, and A. A. Safari (2011). Di-(2-Ethylhexyl) Phthalate oxidative degradation by Fenton process in synthetic and real petrochemical wastewater. Iran. J. Environ. Health Sci. Eng. 8, 201–206.

    CAS  Google Scholar 

  16. I. Gulkaya, G. A. Surucu, and F. B. Dilek (2006). Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. J. Hazard. Mater. 136, 763–769.

    Article  CAS  Google Scholar 

  17. H. A. E. Hagelin-Weaver, G. B. Hoflund, D. M. Minahan, and G. N. Salaita (2004). Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar + bombardment. Appl. Surf. Sci. 235, 420–448.

    Article  CAS  Google Scholar 

  18. L. He, L. Jing, Y. Luan, L. Wang, and H. Fu (2014). Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight. ACS Catal. 4, 990–998.

    Article  CAS  Google Scholar 

  19. M. R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96.

    Article  Google Scholar 

  20. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. Herrmann (2001). Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157.

    Article  CAS  Google Scholar 

  21. Y. W. Kang, M. J. Cho, and K. Y. Hwang (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 33, 1247–1251.

    Article  CAS  Google Scholar 

  22. V. Kavitha and K. Palanivelu (2005). Destruction of cresols by Fenton oxidation process. Water Res. 39, 3062–3072.

    Article  CAS  Google Scholar 

  23. M. Kobya, O. T. Can, and M. Bayramoglu (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J. Hazard. Mater. 100, 163–178.

    Article  CAS  Google Scholar 

  24. S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, and R. Nakagaki (2005). Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catal. Commun. 6, 185–189.

    Article  CAS  Google Scholar 

  25. S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, and R. Nakagaki (2003). Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B 46, 573–586.

    Article  CAS  Google Scholar 

  26. K. Krishnamoorthy, R. Mohan, and S. J. Kim (2011). Graphene oxide as a photocatalyst material. Appl. Phys. Lett. 98, 1–3.

    Article  Google Scholar 

  27. A. Kudo, H. Kato, and I. Tsuji (2004). Strategies for the development of visible-light driven photo catalysts for water splitting. Chem. Lett. 33, 1534–1539.

    Article  CAS  Google Scholar 

  28. M. R. Kumar (2009). Recycling of woven fabric dyeing wastewater practiced in Perundurai common effluent treatment plant. Mod. Appl. Sci. 3, 146–160.

    CAS  Google Scholar 

  29. R. Leary and A. Westwood (2011). Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49, 741–772.

    Article  CAS  Google Scholar 

  30. J. Lee, D. H. K. Jackson, T. Li, R. E. Winans, J. A. Dumesic, T. F. Kuech, and G. W. Huber (2014). Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy Environ. Sci. 7, 1657–1660.

    Article  CAS  Google Scholar 

  31. H. Liang, J. M. Raitano, L. Zhang, and S. W. Chan (2009). Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem. Commun., 7569–7571.

  32. H. M. Liu, R. Nakamura, and Y. Nakato (2005). Bismuth–copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. Chem. Phys. Chem. 6, 2499–2502.

    Article  CAS  Google Scholar 

  33. M. Liu, R. Inde, M. Nishikawa, X. Qiu, D. Atarashi, E. Sakai, Y. Nosaka, K. Hashimoto, and M. Miyauchi (2014). Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts. ACS Nano 8, 7229–7238.

    Article  CAS  Google Scholar 

  34. N. Manivasakam Industrial Effluents Origin, Characteristics, Effects, Analysis and Treatment (Sakthi Publications, Coimbatore, 2003).

    Google Scholar 

  35. L. Metcalf and H. P. Eddy Wastewater Engineering: Treatment and Reuse, 4th ed (McGraw-Hill, New York, 2004), pp. 93–94.

    Google Scholar 

  36. M. Niu, D. Cheng, and D. Cao (2014). Understanding the mechanism of photocatalysis enhancements in the graphene-like semiconductor sheet/TiO2 composites. J. Phys. Chem. C 118, 5954–5960.

    Article  CAS  Google Scholar 

  37. M. Panizza and M. A. Oturan (2011). Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim. Acta 56, 7084–7087.

    Article  CAS  Google Scholar 

  38. S. K. Pardeshi and A. B. Patil (2008). A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol. Energy 82, 700–705.

    Article  CAS  Google Scholar 

  39. K. M. Parida and S. Parija (2006). Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Sol. Energy 80, 1048–1054.

    Article  CAS  Google Scholar 

  40. P. S. Patil, L. D. Kadam, and C. D. Lokhande (1996). Preparation and characterization of spray pyrolysed cobalt oxide thin films. Thin Solid Films 272, 29–32.

    Article  CAS  Google Scholar 

  41. Pham TA, Kim J, Kim JS, Jeong YT, Corrigendum to (2011) “One-step reduction of graphene oxide with 1-glutathione” [Colloids Surf. A: Physicochem. Eng. Asp. 384, 543–548], Colloids Surf. A Physicochem. Eng. Asp. 384, 543.

  42. J. J. Pignatello, E. Oliveros, and A. Mackay (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. J. Crit. Rev. Environ. Sci. Technol. 36, 1–84.

    Article  CAS  Google Scholar 

  43. W. H. Ryu, T. H. Yoon, S. H. Song, S. Jeon, Y. J. Park, and I. D. Kim (2013). Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle-Li-O2 batteries. Nano Lett. 13, 4190–4197.

    Article  CAS  Google Scholar 

  44. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus (2011). Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550.

    Article  CAS  Google Scholar 

  45. S. Sakthivel and H. Kisch (2003). Daylight photocatalysis by carbon- modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908–4911.

    Article  CAS  Google Scholar 

  46. M. Shanmugam and R. Jayavel (2015). Synthesize of graphene-tin oxide nanocomposite and its photocatalytic properties for the degradation of organic pollutants under visible light. J. Nanosci. Nanotechnol. 15, 7195–7201.

    Article  CAS  Google Scholar 

  47. K. M. Srestha, C. M. Sorensen, and K. J. Klabunde (2010). Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368–14376.

    Article  Google Scholar 

  48. Z. Sun, Y. Chen, Q. Ke, Y. Yang, and J. Yuan (2002). Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. J. Photochem. Photobiol. A 149, 169–174.

    Article  CAS  Google Scholar 

  49. L. L. Tan, W. J. Ong, S. P. Chai, and A. R. Mohamed (2015). Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl. Catal. B Environ. 166–167, 251–259.

    Article  Google Scholar 

  50. J. W. Tang, Z. G. Zou, and J. H. Ye (2004). Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible light-irradiation. Angew. Chem. Int. Ed. 43, 4463–4466.

    Article  CAS  Google Scholar 

  51. G. Tchobanoglous and F. L. Burton Wastewater Engineering: Treatment, Disposal and Reuse (Tata McGraw- Hill Publishing Co., Ltd., New Delhi, 1995).

    Google Scholar 

  52. F. Tuinstra and J. L. Koenig (1970). Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130.

    Article  CAS  Google Scholar 

  53. D. Venieri, A. Fraggedaki, M. Kostadima, E. Chatzisymeon, V. Binas, A. Zachopoulos, G. Kiriakidis, and D. Mantzavinos (2014). Solar light and metal-doped TiO2 to eliminate water- transmitted bacterial pathogens: photocatalyst characterization and disinfection performance. Appl. Catal. B Environ. 154–155, 93–101.

    Article  Google Scholar 

  54. B. Weng, J. Wu, N. Zhang, and Y. J. Xu (2014). Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene–WO3 nanorod photocatalysts. Langmuir 30, 5574–5584.

    Article  CAS  Google Scholar 

  55. Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, and H. M. Cheng (2010). Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187–3194.

    Article  CAS  Google Scholar 

  56. Q. Xiang, J. Yu, and M. Jaroniec (2012). Graphene based semiconductor photocatalysis. Chem. Soc. Rev. 41, 782–796.

    Article  CAS  Google Scholar 

  57. C. Yang, X. Su, J. Wang, X. Cao, S. Wang, and L. Zhang (2013). Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties. Sens. Actuators B 185, 159–165.

    Article  CAS  Google Scholar 

  58. H. Yu, H. Irie, and K. Hashimoto (2010). Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. J. Am. Chem. Soc. 132, 6898–6899.

    Article  CAS  Google Scholar 

  59. J. Yuan, J. Zhu, H. Bi, X. Meng, S. Liang, L. Zhang, and X. Wang (2013). Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties. Phys. Chem. Chem. Phys. 15, 12940–12945.

    Article  CAS  Google Scholar 

  60. F. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. Teshima, S. Oishi, and K. Domen (2012). Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 134, 8348–8351.

    Article  CAS  Google Scholar 

  61. H. Zhang, X. Chen, Z. Li, J. Kou, T. Yu, and Z. Zou (2007). Preparation of sensitized ZnS and its photocatalytic activity under visible light irradiation. J. Phys. D Appl. Phys. 40, 6846–6849.

    Article  CAS  Google Scholar 

  62. J. Zhang, Z. Xiong, and X. S. Zhao (2011). Graphene-metal oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 21, 3634–3640.

    Article  CAS  Google Scholar 

  63. Y. C. Zhang, W. W. Chen, and X. Y. Hu (2007). Controllable synthesis and optical properties of Zn-doped CdS nanorods from single-source molecular precursors. Cryst. Growth Des. 7, 580–586.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A3B03029814).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayavel Ramasamy or Young-Ho Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, S., Ramasamy, J. & Ahn, YH. Enhanced Photocatalytic Degradation of Synthetic Dyes and Industrial Dye Wastewater by Hydrothermally Synthesized G–CuO–Co3O4 Hybrid Nanocomposites Under Visible Light Irradiation. J Clust Sci 29, 235–250 (2018). https://doi.org/10.1007/s10876-017-1329-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1329-3

Keywords

Navigation