Skip to main content
Log in

Anticancer Properties of Phyto-Synthesized Silver Nanoparticles from Medicinal Plant Artemisia tschernieviana Besser Aerial Parts Extract Toward HT29 Human Colon Adenocarcinoma Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study highlights the apoptosis-inducing ability of eco-friendly phyto-synthesis route for silver nanoparticles (AgNPs) by using Artemisia tschernieviana extract (ATE). The aerial parts extract of A. tschernieviana was analysed for chemical composition using the gas chromatography–mass spectrometer (GC–MS) analysis. The phyto-synthesized AgNPs using A. tschernieviana extract (AgNP-ATE) were characterized by ultraviolet–visible, zeta potential, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The AgNP-ATE thus prepared was observed to have characteristic surface plasmon resonance peak at around 425 nm. The surface morphology and size of AgNPs show that the particles were mostly spherical and their sizes varied from 5 to 50 nm. The prepared AgNP-ATE showed more potent in vitro cytotoxicity against HT29 human colon adenocarcinoma cell line than normal human embryonic kidney (HEK293) cells. Moreover, studies such as Fluorescein isothiocyanate-annexin V and propidium iodide staining, caspase assay, and Hoecht 33258 staining demonstrate that the prepared AgNP-ATE shows significantly enhanced apoptosis in human colon cancer cells as compared to untreated cells. The current data suggest that the phyto-synthesized AgNPs show effective anticancer properties against HT29 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Assadi, V. S. Najafabadi, S. A. Sadat Shandiz, A. S. Boroujeni, S. Ashrafi, A. Z. Vaziri, S. M. Ghoreishi, M. R. Aghasadeghi, S. E. S. Ebrahimi, M. Pirali Hamedani, and M. S. Ardestani (2016). Oncotarget Ther. 9, 5531.

    Article  Google Scholar 

  2. B. Ajitha, K. R. Y. Ashok, and R. P. Sreedhara (2015). Mater. Sci. Eng. C 49, 373.

    Article  CAS  Google Scholar 

  3. S. A. Sadat Shandiz, M. S. Ardestani, D. Shahbazzadeh, A. Assadi, R. A. Cohan, V. Asgary, and S. Salehi (2016). Artif. Cells Nanomed. Biotechnol.. doi:10.1080/21691401.2016.1202257.

    Google Scholar 

  4. C. F. Chau, S. H. Wu, and G. C. Yen (2007). Trends Food Sci. Technol. 18, 269.

    Article  CAS  Google Scholar 

  5. N. R. Panyala, E. M. Pena-Mendez, and J. Havel (2008). J. Appl. Biomed. 6, 117.

    CAS  Google Scholar 

  6. E. Ezzatzadeh, M. H. Farjam, and A. Rustaiyan (2012). Asian Pac. J. Trop. Dis. 2, 431.

    Article  Google Scholar 

  7. A. Tao, P. Sinsermsuksaku, and P. Yang (2006). Angew. Chem. Int. Ed. 45, 4597.

    Article  CAS  Google Scholar 

  8. K. Li and F. S. Zhang (2010). J. Nanopart. Res. 12, 1423.

    Article  CAS  Google Scholar 

  9. A. T. Le, L. T. Tam, P. D. Tam, et al. (2010). Mater. Sci. Eng. C 30, 910.

    Article  CAS  Google Scholar 

  10. K. Malice, M. S. Witcombb, and M. S. Scurrella (2005). Mater. Chem. Phys. 90, 221.

    Article  Google Scholar 

  11. M. N. Nadagouda, T. F. Speth, and R. S. Varma (2011). Acc. Chem. Res. 44, 469.

    Article  CAS  Google Scholar 

  12. R. Zamiri, A. Zakaria, H. Abbastabar, M. Darroudi, M. S. Husin, and M. A. Mahdi (2011). Int. J. Nanomed. 6, 565.

    Article  CAS  Google Scholar 

  13. M. Etemadzade, A. Ghamarypour, R. Zabihollahi, G. Shabbak, M. Shirazi, H. Sahebjamee, A. Z. Vaziri, A. Assadi, M. S. Ardestani, S. A. Sadat Shandiz, and M. R. Aghasadeghi (2016). Asian Pac. J. Trop. Dis. 6, 854.

    Article  Google Scholar 

  14. J. E. Hutchison (2008). ACS Nano 2, 395.

    Article  CAS  Google Scholar 

  15. M. Rahimi Nasrabadi, S. M. Pourmortazavi, S. A. Sadat Shandiz, F. Ahmadi, and H. Batooli (2014). Nat. Prod. Res. 28, 1964.

    Article  CAS  Google Scholar 

  16. K. Murugan, B. Senthilkumar, D. Senbagam, and S. Al-Sohaibani (2014). Int. J. Nanomed. 9, 2431.

    Google Scholar 

  17. G. R. Salunke, S. Ghosh, R. J. S. Kumar, S. Khade, P. Vashisth, T. Kale, S. Chopade, V. Pruthi, G. Kundu, J. R. Bellare, and B. A. Chopade (2014). Int. J. Nanomed. 9, 2635.

    Google Scholar 

  18. M. R. Romero, M. A. Serrano, M. Vallejo, T. Efferth, M. Alvarez, and J. J. Marin (2006). Planta Med. 72, 1169.

    Article  CAS  Google Scholar 

  19. S. Salehi, A. Mirzaie, S. A. Sadat Shandiz, H. Noorbazargan, A. Rahimi, S. Yarmohammadi, and F. Ashrafi (2016). Nat. Prod. Res.. doi:10.1080/14786419.2016.1174234.

    Google Scholar 

  20. H. Nahrevanian, B. Milan, M. Kazemi, R. Hajhosseini, S. S. Mashhadi, and S. Nahrevanian (2012). Malar. Res. Treat.. doi:10.1155/2012/727032.

    Google Scholar 

  21. M. T. Golmakani and K. Rezaei (2008). J. Food Chem. 109, 925.

    Article  CAS  Google Scholar 

  22. M. Vijayakumar, K. Priya, F. T. Nancy, A. Noorlidah, and A. B. A. Ahmed (2013). Ind. Crops Prod. 41, 235.

    Article  CAS  Google Scholar 

  23. N. Basavegowda, A. Idhayadhulla, and Y. R. Lee (2014). Mater. Sci. Eng. C 43, 58.

    Article  CAS  Google Scholar 

  24. S. Salehi, S. A. Sadat Shandiz, F. Ghanbar, M. R. Darvish, M. S. Ardestani, A. Mirzaie, and M. Jafari (2016). Int. J. Nanomed. 11, 1835.

    CAS  Google Scholar 

  25. Z. M. B. Pasha, P. A. Azar, and M. Raeesi (2012). J. Med. Plants Res. 6, 5489.

    Google Scholar 

  26. A. P. Azar, M. S. Tehrani, S. W. Hosain, M. A. Khalilzadeh, and P. M. B. Zanousi (2012). Asian J. Chem. 24, 5388.

    CAS  Google Scholar 

  27. V. Asgary, A. Shoari, F. Baghbani-arani, S. A. Sadat Shandiz, M. S. Khosravi, A. Janani, R. Bigdeli, R. Bashar, and R. A. Cohan (2016). Int. J. Nanomed. 11, 3597.

    Article  Google Scholar 

  28. K. Kalishwaralal, E. Banumathi, S. R. K. Pandian, et al. (2009). Colloids Surf. B Biointerfaces 73, 51.

    Article  CAS  Google Scholar 

  29. D. Preeti and M. Mausumi (2013). J. Nanopart. Res. 15, 1366.

    Article  Google Scholar 

  30. M. Noruzi, D. Zare, and D. Davoodi (2012). Spectrochim. Acta A 94, 84.

    Article  CAS  Google Scholar 

  31. A. Saravanakumar, M. Ganesh, J. Jayaparakash, and H. T. Jang (2015). J. Ind. Eng. Chem. 28, 277.

    Article  CAS  Google Scholar 

  32. R. Sankar, A. Karthik, A. Prabu, S. Karthik, K. S. Shivashankari, and V. Ravikumar (2013). Colloids Surf. B Biointerfaces 108, 80.

    Article  CAS  Google Scholar 

  33. N. S. Shaligram, M. Bule, R. Bhambure, et al. (2009). Process Biochem. 44, 939.

    Article  CAS  Google Scholar 

  34. D. S. Balaji, S. Basavaraja, R. Deshpande, D. B. Mahesh, B. K. Prabhakar, and A. Venkataraman (2009). Colloids Surf. B Biointerfaces 68, 88.

    Article  CAS  Google Scholar 

  35. S. Hackenberg, A. Scherzed, M. Kessler, et al. (2011). Toxicol. Lett. 201, 27.

    Article  CAS  Google Scholar 

  36. R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, and S. Kannan (2012). Process Biochem. 47, 2405.

    Article  CAS  Google Scholar 

  37. D. K. Tiwari, T. Jin, and J. Behari (2011). Toxicol. Mech. Methods 21, 13.

    Article  CAS  Google Scholar 

  38. B. Patel, V. R. Shah, and S. A. Bavadekar (2012). FASEB J. 26, (supplement 1037), 5.

    Google Scholar 

  39. R. Govender, A. Phulukdaree, R. M. Gengan, K. Anand, and A. A. Chuturgoon (2013). J. Nanobiotechnol. 11, 5.

    Article  CAS  Google Scholar 

  40. C. Borner (2003). Mol. Immunol. 39, 615.

    Article  CAS  Google Scholar 

  41. G. Kroemer, L. Galluzzi, P. Vandenabeele, et al. (2009). Cell Death Differ. 16, 3.

    Article  CAS  Google Scholar 

  42. L. Galluzzi, I. Vitale, J. M. Abrams, et al. (2012). Cell Death Differ. 19, 107.

    Article  CAS  Google Scholar 

  43. S. J. Riedl and Y. Shi (2004). Nat. Rev. Mol. Cell Biol. 5, 897.

    Article  CAS  Google Scholar 

  44. S. Fattah, B. Javani, M. Saffari, S. A. Sadat Shandiz, and M. S. Ardestani (2016). J. Exp. Biol. Agric. Sci.. doi:10.18006/2016.4(4).440.447.

    Google Scholar 

  45. Y. Pommier, O. Sordet, S. Antony, R. L. Hayward, and K. W. Kohn (2004). Oncogene 23, 2934.

    Article  CAS  Google Scholar 

  46. A. Thirunavukkarasu, D. Prabhu, R. Geetha, K. Govindaraju, R. Manikandan, C. Arulvasu, and G. Singaravel (2014). Colloids Surf. B 123, 549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Baghbani-Arani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, H., Sadat Shandiz, S.A. & Baghbani-Arani, F. Anticancer Properties of Phyto-Synthesized Silver Nanoparticles from Medicinal Plant Artemisia tschernieviana Besser Aerial Parts Extract Toward HT29 Human Colon Adenocarcinoma Cells. J Clust Sci 28, 1617–1636 (2017). https://doi.org/10.1007/s10876-017-1172-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1172-6

Keywords

Navigation