Skip to main content
Log in

Stenotrophomonas and Microbacterium: Mediated Biogenesis of Copper, Silver and Iron Nanoparticles—Proteomic Insights and Antibacterial Properties Versus Biofilm Formation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoparticle biosynthesis mediated by plants, microbes, fungus or algae is a safe and eco-friendly approach addressing various applications in the medicine, cosmetics, biosensors and agricultural industry. Morphology of the synthesized particles depends largely on the type of organism involved, culture-conditions like temperature, pH and the substrate-concentration. This paper reports the synthesis of copper, silver and iron NPs by exposing living cells of D−4 strain of Microbacterium marinilacus and III−5 strain of Stenotrophomonas maltophilia to aqueous solutions of Cu2+, Ag2+ and Fe3+ ions. These strains were isolated from Damodar-river sediments in Burnpur, Asansol, India and identified by 16S rDNA-sequencing and phylogenetic-tree analysis. NCBI GenBank Accession No. was KT346339 for III−5 and KT346340 for D−4 isolates respectively. UV-spectrophotometer-analysis of culture supernatant and scanning electron microscopy confirmed biogenesis of the nanoclusters. X-ray diffraction and Fourier transformed infrared spectroscopy further confirmed the nano-dimension of the particles. Atomic force microscopy revealed the conformation of nanoparticles. Antibacterial properties of the synthesized particles against gram positive Bacillus cereus and gram negative Escherichia coli were studied through agar-plate-well-diffusion. Effects of the particles on growth of S. maltophilia PM102 were monitored. Data-analysis with one-way-ANOVA and Tukey’s-HSD-test was done. Protein-profile of the isolates in the presence and absence of nanoparticles was studied through SDS-PAGE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.s 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Benelli (2016). Parasitol. Res. 115, 23.

    Article  Google Scholar 

  2. G. Reiss, A. Hutten, and D. Klaus Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, Boca Raton, 2010), p. 2.

    Google Scholar 

  3. R. Bhattacharya and P. Mukherjee (2008). Adv. Drug Deliv. Rev. 60, (11), 1289.

    Article  CAS  Google Scholar 

  4. C. Granqvist, R. Burhman, J. Wyns, and A. Sievers (1976). Phys. Rev. Lett. 37, (10), 625.

    Article  CAS  Google Scholar 

  5. C. Hayashi, R. Uyeda, and A. Tasaki Translation of the Japan report of the related ERATO Project (Noyes Publications, New York, 1997), pp. 1981–1986.

    Google Scholar 

  6. K. B. Narayanan and N. Sakthivel (2010). Adv. Colloid Interface Sci. 156, 1.

    Article  CAS  Google Scholar 

  7. O. V. Salata (2004). J. Nanobiotechnol. 2, 3.

    Article  Google Scholar 

  8. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson (2003). J. Phys. D 36, 167.

    Article  Google Scholar 

  9. J. Wang, L. Wen, Z. Wang, and J. Chen (2006). Mater. Chem. Phys. 96, 90.

    Article  CAS  Google Scholar 

  10. R. Bhattacharya and P. Mukherjee (2008). Adv. Drug Deliv. Rev. 60, 1289.

    Article  CAS  Google Scholar 

  11. S. Barua, G. Das, L. Aidew, A. K. Buragohain, and N. Karak (2013). RSC Adv. 3, 14997.

    Article  CAS  Google Scholar 

  12. A. Kamal, V. Srinivasulu, J. N. S. R. C. Murty, N. Shankaraiah, N. Nagesh, T. S. Reddy, and A. V. SubbaRao (2013). Adv. Synth. Catal. 355, (11), 2297.

    Article  CAS  Google Scholar 

  13. P. Mohanpuria, K. N. Rana, and S. K. Yadav (2008). J. Nanoparticle Res. 10, 507.

    Article  CAS  Google Scholar 

  14. J. K. Fu, Y. Liu, P. Gu, D. L. Tang, Z. Y. Lin, B. X. Yao, and S. Z. Weng (2000). Acta Phys.-Chim. Sin. 16, (9), 770.

    Google Scholar 

  15. J. K. Fu, W. D. Zhang, Y. Y. Liu, Z. Y. Lin, B. X. Yao, and S. Z. Weng (1999). Chem. J. Chin. Univ. 20, (9), 1452.

    CAS  Google Scholar 

  16. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, N. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya (2007). Mater. Lett. 61, 1413.

    Article  CAS  Google Scholar 

  17. K. C. Bhainsa and S. F. D. Souza (2006). Biointerfaces 47, 160.

    Article  CAS  Google Scholar 

  18. D. Dinesh, K. Murugan, P. Madhaiyazhagan, C. Panneerselvam, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519.

    Article  Google Scholar 

  19. P. Madhaiyazhagan, K. Murugan, A. N. Kumar, T. Nataraj, D. Dinesh, C. Panneerselvam, J. Subramaniam, P. M. Kumar, U. Suresh, M. Roni, M. Nicoletti, A. A. Alarfaj, A. Higuchi, M. A. Munusamy, and G. Benelli (2015). Parasitol. Res. doi:10.1007/s00436-015-4671-0.

    Google Scholar 

  20. B. Chandramohan, K. Murugan, C. Panneerselvam, P. Madhaiyazhagan, R. Chandrasekhar, D. Dinesd, P. M. Kumar, K. Kovendan, U. Suresh, J. Subramaniam, R. Rajaganesh, A. T. Aziz, B. Syuhei, M. S. Alsalh, S. Devanesan, M. Nicoletti, H. Wei, and G. Benelli (2016). Parasitol. Res. 115, 1015.

    Article  Google Scholar 

  21. K. Murugan, C. Panneerselvam, C. M. Samidoss, P. Madhaiyazhagan, M. Roni, J. Subramaniam, D. Dinesd, R. Rajaganesh, M. Paulpandi, H. Wei, A. T. Aziz, M. S. Alsalhi, S. Devanesan, M. Nicoletti, R. Pavela, A. Canale, and G. Benelli (2016). Res. Vet. Sci. 106, 14.

    Article  Google Scholar 

  22. C. Panneerselvam, K. Murugan, M. Roni, A. T. Aziz, U. Suresh, R. Rajaganesh, P. Madhaiyazhagan, J. Subramaniam, D. Dinesd, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, N. Desneux, and G. Benelli (2016). Parasitol. Res. 115, 997.

    Article  Google Scholar 

  23. V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni, M. Nicoletti, A. Higuchi, P. Madhaiyazhagan, J. Subramaniam, D. Dinesd, C. Vadivalagan, B. Chandramohan, A. A. Alarfaj, M. A. Munusamy, D. R. Barnard, and G. Benelli (2015). Parasitol. Res. 114, 3315.

    Article  Google Scholar 

  24. K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J. S. Hwang, U. Suresh, and P. Madhiyazhagan (2015). Exp. Parasitol. doi:10.1016/j.exppara.2015.03.017.

    Google Scholar 

  25. J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. M. Kumar, B. Chandramohan, U. Suresh, R. Rajaganesh, M. S. Alsalhi, S. Devanesan, M. Nicoletti, A. Canale, and G. Benelli (2016). Environ. Sci. Pollut. Res. Int. doi:10.1007/s11356-015-6007-0.

    Google Scholar 

  26. C. V. Baco, L. Datas, and P. Tailhades (2011). Nanotechnology 1, 7.

    Google Scholar 

  27. U. B. Sleyt, P. Messner, D. Pum, and M. Sára (1993). Mol. Microbiol. 10, 911.

    Article  Google Scholar 

  28. R. Ramanathan, M. R. Field, A. P. O’Mullane, P. M. Smooker, and S. K. Bhargava (2013). Nanoscale 5, 2300.

    Article  CAS  Google Scholar 

  29. Y. Roh (2006). Appl. Environ. Microbiol. 72, 3236.

    Article  CAS  Google Scholar 

  30. Y. Roh, H. Vali, T. J. Phelps, and J. W. Moon (2006). J. Nanosci. Nanotechnol. 6, 3517.

    Article  CAS  Google Scholar 

  31. J. Borcherding, J. Baltrusaitis, H. Chen, L. Stebounova, C. M. Wu, G. Rubasinghege, A. I. Mudunkotuwa, J. C. Caraballo, J. Zabner, V. H. Grassian, and A. P. Comellas (2014). Environ. Sci. Nano. 1, (2), 123.

    Article  CAS  Google Scholar 

  32. S. Chowdhury, A. Basu, and S. Kundu (2014). Nanoscale Res. Lett. doi:10.1186/1556-276X-9-365.

    Google Scholar 

  33. F. Bahrampour, J. Raheb, and Z. J. Rabiei (2013). Nanostruct Chem. doi:10.1186/2193-8865-3-58.

    Google Scholar 

  34. C. D. Elcey, A. T. Kuruvilla, and D. Thomas (2014). Int. J. Curr. Microbiol. Appl. Sci. 3, (8), 408.

    CAS  Google Scholar 

  35. R. Satyanarayana, C. Y. Chen, C. C. Chen, and J. C. Wang (2010). J. Nanosci. Nanotechnol. 10, (10), 6567.

    Article  Google Scholar 

  36. P. Mukherjee and P. Roy (2012). Adv. Microbiol. 2, (3), 184.

    Article  Google Scholar 

  37. P. Mukherjee and P. Roy (2013). Springer Plus 2, 207.

    Article  Google Scholar 

  38. P. Mukherjee and P. Roy (2013). J Bioremed Biodeg. 4, (2), 177.

    Google Scholar 

  39. P. Mukherjee, and P. Roy (2013). Biomed. Res. Int. (Special issue on: Biotechnology in Environmental Monitoring and Pollution Abatement). doi:10.1155/2013/714232.

  40. P. Mukherjee, and P. Roy (2013). Biomed. Res. Int. 2013, 9 (Special issue on: Microbial Enzymes and Their Applications in Industries and Medicine). doi:10.1155/2013/723680.

  41. P. Mukherjee and P. Roy (2016). Front Microbiol. doi:10.3389/fmicb.2016.00967.

    Google Scholar 

  42. Y. Nangia, N. Wangoo, N. Goyal, G. Shekhawat, and C. R. Suri (2009). Microbial Cell Factories. doi:10.1186/1475-2859-8-39.

    Google Scholar 

  43. Y. Nangia, N. Wangoo, S. Sharma, J. S. Wu, V. Dravid, G. S. Shekhawat, and C. R. Suri (2009). Appl. Phys. Lett. doi:10.1063/1.3141519.

    Google Scholar 

  44. M. Oves, M. S. Khan, A. Zaidi, A. S. Ahmed, F. Ahmed, E. Ahmad, A. Sherwani, M. Owais, and A. Azam (2013). Plos One. doi:10.1371/journal.pone.0059140.

    Google Scholar 

  45. A. Kageyama, Y. Takahashi, Y. Matsuo, H. Kasai, Y. Shizuri, and S. Omura (2007). Int. J. Syst. Evol. Microbiol. 57, (10), 2355.

    Article  CAS  Google Scholar 

  46. J. Sambrook, E. F. Fritschi, and T. Maniatis Molecular Cloning: A Laboratory Manual (Cold Spring Harbour Laboratory Press, New York, 1989).

    Google Scholar 

  47. H. David Statistical Methods for Psychology (Duxbury, 2002). pp. 324–325.

  48. J. Tukey (1949). Biometrics 5, (2), 99–114.

    Article  CAS  Google Scholar 

  49. R. Janardhanan, M. Karuppaiah, N. Hebalkar, and T. N. Rao (2009). Polyhedron 28, 2522–2530.

    Article  CAS  Google Scholar 

  50. W. Wei, X. Mao, L. A. Ortiz, and D. R. Sadoway (2010). J. Mater. Chem. doi:10.1039/c0jm02214d.

    Google Scholar 

  51. Y. Bang Nanometre Era: Reality and Dream (Beijing, 2001).

  52. P. Debye and P. Scherrer (1916). Physik. Z. 17, 277.

    CAS  Google Scholar 

  53. P. Debye and P. Scherrer (1917). Physik. Z. 18, 291.

    CAS  Google Scholar 

  54. W. L. Bragg (1913). Proc. Camb. Phil. Soc. 17, 43.

    CAS  Google Scholar 

  55. J. Coates Encyclopaedia of Analytical Chemistry (Wiley, Chichester, 2000).

    Google Scholar 

Download references

Acknowledgments

The author extends her thanks to the Dept of Biotechnology for providing lab space to carry out this research work. The author also sincerely acknowledges the SEM facility at USIC (University Science and Instrumentation Section), The University of Burdwan and XRD, FTIR and AFM facility provided by the Indian Association of Cultivation of Science (IACS), Kolkata. This research was supported by Funds received from DST (Dept of Science and Technology), New Delhi, India.

Funding

This research was funded by the Department of Science and Technology (DST), New Delhi, India through grant of INSPIRE fellowship (Innovation in Science Pursuit for Inspired Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyali Mukherjee.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P. Stenotrophomonas and Microbacterium: Mediated Biogenesis of Copper, Silver and Iron Nanoparticles—Proteomic Insights and Antibacterial Properties Versus Biofilm Formation. J Clust Sci 28, 331–358 (2017). https://doi.org/10.1007/s10876-016-1097-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1097-5

Keywords

Navigation