Skip to main content
Log in

Structure and Stability of the Li+Xen and LiXen Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have studied the structure and stability of the ionic Li+Xen and neutral LiXen (n = 1–35) small clusters. The potential energy surface of the ionic cluster is described using additive potentials, which represent the pair interactions taken from the best available coupled cluster ab initio calculations. The V +Li Xe and VXe−Xe potentials have been fitted by Tang and Toennies and Lennard-Jones (LJ) forms, respectively. The structure of LiXen neutral clusters have been investigated using a model potential and ab initio calculations. We have used the Li+Xe potential in its ground state and fitted to the Tang and Toennies formula. The LiXen optimized geometry is, then, used for one electron self consistent filed calculation of the only alkali valence electron interacting with the Li+Xen cluster. In order to determine the geometry of Li+Xen and LiXen clusters and their isomers, the potential energy surface has been explored by the Monte Carlo basin Hopping method. Their relative stability was studied by evaluating the energy and the energy differences as function of number n of Xenon atoms in clusters. It was shown, for Li+Xen, that n = 4, 6, 10, 14, 16, 18, 20, 22, 24, 26, 28 and 30 are the most stable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Tsoo, D. Estrin, and S. Singer (1990). J. Chem. Phys. 93, 7187.

    Article  CAS  Google Scholar 

  2. J. Maclyn, M. McCarty, and G. W. Robinson (1959). Mol. Phys. 2, 415.

    Article  Google Scholar 

  3. B. Meyer (1965). J. Chem. Phys. 43, 2986.

    Article  CAS  Google Scholar 

  4. L. C. Balling, M. D. Havey, and J. Dawson (1978). F. J. Chem. Phys. 69, 1670.

    Article  CAS  Google Scholar 

  5. L. C. Balling, J. F. Dawson, and M. D. Havey (1979). J. Phys. Rev. Lett. 43, 435.

    Article  CAS  Google Scholar 

  6. J. J. Wright and L. C. Balling (1978). J. Chem. Phys. 73, 994.

    Article  Google Scholar 

  7. L. C. Balling and J. J. Wright (1983). J. Chem. Phys. 79, 2941.

    Article  CAS  Google Scholar 

  8. L. C. Balling and J. J. Wright (1984). J. Chem. Phys. 81, 675.

    Article  CAS  Google Scholar 

  9. J. A. Boatz and M. E. Fajardo (1994). J. Chem. Phys. 101, 3472.

    Article  CAS  Google Scholar 

  10. G. Martyna, C. Cheng, and M. L. Klein (1991). J. Chem. Phys. 95, 1318.

    Article  CAS  Google Scholar 

  11. George E. Froudakis and Stavros C. Farantos (2000). M. Velegrakis. J. Chem. Phys. 258, 13.

    CAS  Google Scholar 

  12. Dhiflaoui J, Bouzouita H and Berriche H, Computation in Modern Science and Engineering, Proceeding of the International Conference on Computational Methods in Science and Engineering 2007, edited by T. E. Simos and G. Maroulis, American Institute of Physics. 2 CP 963, (2007).

  13. D. Prekas, C. Lüder, and M. Velegrakis (1998). J. Chem. Phys. 108, 4450.

    Article  CAS  Google Scholar 

  14. G. S. Fanourgakis, S. C. Farantos, C. Lüder, M. Velegrakis, and S. S. Xantheas (1996). J. Chem. Phys. 109, 108.

    Article  Google Scholar 

  15. M. Ben El Hadj Rhouma, H. Berriche, Z. Ben Lakhdar, and F. Spiegelman (2004). Int J. Quant. Chem. 99, 495.

    Article  Google Scholar 

  16. C. Lüder, D. Prekas, and M. Velegrakis (1997). Laser Chem. 17, 109.

    Article  Google Scholar 

  17. M. El Hadj Rhouma, H. Berriche, Z. Ben Lakdhar, and F. Spiegelman (2002). J. Chem. Phys. 116, 1839.

    Article  CAS  Google Scholar 

  18. M. El Hadj Rhouma, Z. Ben Lakdhar, H. Berriche, and F. Spiegelman (2006). J. Chem. Phys. 125, 084315.

    Article  Google Scholar 

  19. Akihiro Fujisakia (1995). J. Chem. Phys. 102, 8485.

    Article  Google Scholar 

  20. J. Dhiflaoui, H. Bouzouita, and H. Berriche (2009). Phys. Procedia 2, 1175.

    Article  CAS  Google Scholar 

  21. K. T. Tang and J. P. Toennies (1984). J. Chem. Phys. 80, 3726.

    Article  CAS  Google Scholar 

  22. J. Lozeille, E. Winata, P. Soldán, E. P. F. Lee, L. A. Viehland, and T. G. Wright (2002). Phys. Chem. Chem. Phys. 4, 3601.

    Article  CAS  Google Scholar 

  23. E. A. Mason and H. W. Schamp (1958). Ann. Phys.(N.Y) 4, 233.

    Article  CAS  Google Scholar 

  24. D. J. Wales and J. K. P. Doye (1997). J. Phys. Chem. A. 101, 5111.

    Article  CAS  Google Scholar 

  25. J. E. Jones and A. E. Ingham (1925). Proc. R. Soc. A. 107, 636.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Advanced Materials Center and KACST through the Long-Term Comprehensive National Plan for Science, Technology and Innovation Program (Project no. 10-ADV1164-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Berriche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ahmari, M., Saidi, S., Dhiflaoui, J. et al. Structure and Stability of the Li+Xen and LiXen Clusters. J Clust Sci 26, 913–924 (2015). https://doi.org/10.1007/s10876-014-0780-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0780-7

Keywords

Navigation