Skip to main content
Log in

Lanthanide Cluster Organic Frameworks Derived from Pyridine-2,6-dicarboxylate and Oxalate: Syntheses, Structures and Luminescence

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two novel cluster organic frameworks derived from pyridine-2,6-dicarboxylate (PDA) and oxalate (ox2−) have been hydrothermally made: [Eu3(SO4)(PDA)3(ox)0.5(H2O)5]·4H2O (1) and Er(PDA)(ox)0.5(H2O) (2). Compound 1 possesses one-dimensional chain structure constructed from the alternate linkage of tetranuclear [Eu4(SO4)2]8+ (Eu4) and dinuclear [Eu2(ox)]4+ (Eu2) clusters. Compound 2 is a two-dimensional layer based on dimeric [Er2(COO)2]2+ (Er2) cluster units. Interestingly, such layer can be intuitively viewed as the linkages of helical chains and oxalate. In these two compounds, all anions are bivalent, and the ratio of trivalent lanthanide ions to these dianions is 2:3. Furthermore, compound 1 exhibits strong red luminescence upon 276 nm excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Sessoli and A. K. Powell (2009). Chem. Soc. Rev. 253, 2328.

    CAS  Google Scholar 

  2. A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, and A. Dress (2002). Nature 41, 1162.

    Google Scholar 

  3. A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). Angew. Chem. Int. Ed. 43, 2117.

    Article  CAS  Google Scholar 

  4. M. B. Zhang, J. Zhang, S. T. Zheng, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 1385.

    Article  CAS  Google Scholar 

  5. X. J. Kong, Y. L. Wu, L. S. Long, L. S. Zheng, and Z. P. Zheng (2009). J. Am. Chem. Soc. 131, 6918.

    Article  CAS  Google Scholar 

  6. Z. P. Zheng (2001). Chem. Commun. 2521.

  7. M. Wu, F. Jiang, X. Kong, D. Yuan, L. Long, S. A. AL-Thabaiti, and M. Hong (2013). Chem. Sci. 4, 3104.

    Article  CAS  Google Scholar 

  8. G. Calvez, C. Daiguebonne, and O. Guillou (2011). Inorg. Chem. 50, 2851.

    Article  CAS  Google Scholar 

  9. W. H. Fang, L. Cheng, L. Huang, and G. Y. Yang (2013). Inorg. Chem. 52, 6.

    Article  CAS  Google Scholar 

  10. J. W. Cheng, J. Zhang, S. T. Zheng, M. B. Zhang, and G. Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73.

    Article  CAS  Google Scholar 

  11. J. W. Cheng, J. Zhang, S. T. Zheng, and G. Y. Yang (2008). Chem.-Eur. J. 14, 88.

    Article  CAS  Google Scholar 

  12. W. H. Fang, J. W. Cheng, and G. Y. Yang (2014). Chem.-Eur. J. 20, 2704.

    Article  CAS  Google Scholar 

  13. X. J. Gu and D. F. Xue (2007). Inorg. Chem. 46, 5349.

    Article  CAS  Google Scholar 

  14. J. W. Cheng, S. T. Zheng, W. Liu, and G. Y. Yang (2008). CrystEngComm 10, 1047.

    Article  CAS  Google Scholar 

  15. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev. 38, 1330.

    Article  CAS  Google Scholar 

  16. W. X. Feng, Y. Zhang, Z. Zhang, X. Q. Lu, H. Liu, G. X. Shi, D. Zou, J. R. Song, D. D. Fan, W. K. Wong, and R. A. Jones (2012). Inorg. Chem. 51, 11377.

    Article  CAS  Google Scholar 

  17. Y. Q. Sun, J. Zhang, Y. M. Chen, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 5814.

    Article  CAS  Google Scholar 

  18. J. Xu, W. P. Su, and M. C. Hong (2011). Cryst. Growth Des. 11, 337.

    Article  CAS  Google Scholar 

  19. G. Peng, L. Ma, L. Liang, Y. Ma, C. Yang, and H. Deng (2013). CrystEngComm 15, 922.

    Article  CAS  Google Scholar 

  20. B. Zhao, L. Yi, P. Cheng, D. Z. Liao, S. P. Yan, and Z. H. Jiang (2004). Inorg. Chem. Commun. 7, 971.

    Article  CAS  Google Scholar 

  21. H. Eshtiagh-Hosseini, H. Aghabozorg, M. Mirzaei, M. M. Amini, Y. G. Chen, A. Shokrollahi, and R. Aghaei (2010). J. Mol. Struct. 973, 180.

    Article  CAS  Google Scholar 

  22. M. Frisch, and C. L. Cahill (2006). Dalton Trans. 4679.

  23. D. Banerjee, S. J. Kim, L. A. Borkowski, W. Xu, and J. B. Parise (2009). Cryst. Growth Des. 10, 709.

    Article  Google Scholar 

  24. X. J. Kong, Y. P. Ren, L. S. Long, Z. P. Zheng, G. Nichol, R. B. Huang, and L. S. Zheng (2008). Inorg. Chem. 47, 2728.

    Article  CAS  Google Scholar 

  25. X. Feng, J. S. Zhao, L. Y. Wang, and X. G. Shi (2009). Inorg. Chem. Commun. 12, 388.

    Article  CAS  Google Scholar 

  26. X. Feng, B. Liu, L. Y. Wang, J. S. Zhao, J. G. Wang, N. S. Weng, and X. G. Shi (2010). Dalton Trans. 39, 8038.

    Article  CAS  Google Scholar 

  27. X. Feng, L. Y. Wang, J. S. Zhao, J. G. Wang, N. S. Weng, B. Liu, and X. G. Shi (2010). CrystEngComm 12, 774.

    Article  CAS  Google Scholar 

  28. M. S. Liu, Q. Y. Yu, Y. P. Cai, C. Y. Su, X. M. Lin, X. X. Zhou, and J. W. Cai (2008). Cryst. Growth Des. 8, 4083.

    Article  CAS  Google Scholar 

  29. G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  30. G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  31. G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  32. X. Y. Chen, X. P. Yang, and B. J. Holliday (2010). Inorg. Chem. 49, 2538.

    Google Scholar 

  33. J. Cepeda, R. Balda, G. Beobide, O. Castillo, J. Fernandez, A. Luque, S. Perez-Yanez, P. Roman, and D. Vallejo-Sanchez (2011). Inorg. Chem. 50, 8437.

    Article  CAS  Google Scholar 

  34. B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, C. H. Yan, and G. X. Xu (2000). Angew. Chem. Int. Ed. 39, 3644.

    Article  CAS  Google Scholar 

  35. W. H. Wang, H. R. Tian, Z. C. Zhou, Y. L. Feng, and J. W. Cheng (2012). Cryst. Growth Des. 12, 2567.

    Article  CAS  Google Scholar 

  36. G. Abbas, Y. H. Lan, G. E. Kostakis, W. Wernsdorfer, C. E. Anson, and A. K. Powell (2010). Inorg. Chem. 49, 8067.

    Article  CAS  Google Scholar 

  37. D. M. M. Freckmann, T. Dube, C. D. Berube, S. Gambarotta, and G. P. A. Yap (2002). Organometallics 21, 1240.

    Article  CAS  Google Scholar 

  38. I. A. Gass, B. Moubaraki, S. K. Langley, S. R. Batten, and K. S. Murray (2012). Chem. Commun. 48, 2089.

    Article  CAS  Google Scholar 

  39. W. H. Fang and G. Y. Yang (2014). J. Cluster Sci. doi:10.1007/s10876-014-0717-1.

    Google Scholar 

  40. Y. Q. Sun, J. Zhang, and G. Y. Yang (2006). Chem. Commun. 1947.

  41. A. F. Kirby, D. Foster, and F. S. Richardson (1983). Chem. Phys. Lett. 95, 507.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Nos. 91122028, 21221001, and 50872133), the 973 Program (Nos. 2014CB932101 and 2011CB932504), the NSFC for Distinguished Young Scholars (No. 20725101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, WH., Jia, XL. & Yang, GY. Lanthanide Cluster Organic Frameworks Derived from Pyridine-2,6-dicarboxylate and Oxalate: Syntheses, Structures and Luminescence. J Clust Sci 25, 1553–1565 (2014). https://doi.org/10.1007/s10876-014-0751-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0751-z

Keywords

Navigation