Skip to main content
Log in

An Investigation on the Effects of Experimental Variables on Silver Nano Particles Produced by Electromagnetic Levitation Technique

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study the effects of melt temperature and flow rate of cooling gas on the characteristics of silver nanoparticles have been studied. Transmission electron microscopy and dynamic light scattering techniques have been employed to monitor morphology and particle size of the product. Measurements reveal that higher melt temperatures and higher cooling gas flow rates can decrease particle size. Silver nanoparticles with an average particle size of 35 nm and specific surface of 18.489 m2/g have been obtained at a melt temperature of 1,130 °C with argon flow rate of 20 liters per minute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. L. H. Chau, M. K. Hsu, C. C. Hsieh, and C. C. Kao (2005). Mater. Lett. 59, 905–908.

    Article  CAS  Google Scholar 

  2. D. C. Tien, C. Y. Liao, J. C. Huang, K. H. Tseng, J. K. Lung, T. T. Tsung, W. S. Kao, T. H. Tsai, T. W. Cheng, B. S. Yu, H. M. Lin, and L. Stobinski (2008). Rev. Adv. Mater. Sci. 18, 750–756.

    Google Scholar 

  3. W. Zhang, X. Qiao, and J. Chena (2007). Mater. Sci. Eng. B 142, 1–15.

    Article  CAS  Google Scholar 

  4. K. J. Sreeram, M. Nidhin, and B. U. Nair (2008). Bull. Mater. Sci. 31, 937–942.

    Article  CAS  Google Scholar 

  5. S. H. Lee, S. M. Oh, and D. W. Park (2007). Mater. Sci. Eng. C 27, 1286–1290.

    Article  CAS  Google Scholar 

  6. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid. Interface Sci. 145, 83–96.

    Article  CAS  Google Scholar 

  7. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76–83.

    Article  CAS  Google Scholar 

  8. K. J. Sreeam, M. Nidhin, and B. U. Nair (2008). Bull. Mater. Sci. 31, 937–942.

    Article  Google Scholar 

  9. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt (1984). Phys. Lett. A 102, 365–369.

    Article  Google Scholar 

  10. R. C. Flagan and M. M. Lunden (1995). Mater. Sci. Eng. A 204, 113–124.

    Article  Google Scholar 

  11. C. G. Granqvist and R. A. Buhrman (1976). J. Appl. Phys. 47, 2200–2219.

    Article  CAS  Google Scholar 

  12. A. Simchi, R. Ahmadi, S. M. Seyed Reihani, and A. Mahdavi (2007). Mater. Des. 28, 850–856.

    Article  CAS  Google Scholar 

  13. Z. Moghimi, M. Halali, and M. Nusheh (2006). Metall. Mater. Trans. B 37, 997–1005.

    Article  Google Scholar 

  14. A. Kermanpur, B. Nekooei Rizi, M. Vaghayenegar, and H. Ghasemi Yazdabadi (2009). Mater. Lett. 63, 575–577.

    Article  CAS  Google Scholar 

  15. M. Pishahang and M. Sc Thesis (Sharif University of Technology, Tehran, 2008).

    Google Scholar 

  16. M. Malekzadeh and M. Halali (2011). Chem. Eng. J. 168, 441–445.

    Article  CAS  Google Scholar 

  17. N. E. Kaddah and J. Szekely (1983). Metall. Mater. Trans. B 14, 401–410.

    Google Scholar 

  18. D. Hectors, K. V. Reusel, and J. Driesen (2008). Przeg. Elektrotechn. R 84, 140–143.

    Google Scholar 

  19. C. Ingelbrecht and F. Peetermans (1993). Nucl. Instrum. Methods Phys. Res. A 15, 116–121.

    Article  Google Scholar 

  20. A. Mozaffari and A.R. Nateghi, BSc Thesis, (Sharif University of Technology, 2011).

  21. M. Vaghayenegar, A. Kermanpur, M. H. Abbasi, and H. Ghasemi Yazdabadi (2010). Adv. Powder. Technol. 21, 556–563.

    Article  CAS  Google Scholar 

  22. B. J. McCoy (2000). J. Colloid Interface Sci. 228, 64–72.

    Article  CAS  Google Scholar 

  23. K. Wegner, B. Walker, S. Tsantilis, and S. E. Pratsinis (2002). Chem. Eng. Sci. 57, 1753–1762.

    Article  CAS  Google Scholar 

  24. M. Zhou, Z. Wei, H. Qiao, L. Zhu, H. Yang, and T. Xia (2009). J. Nanomaterials 2009, 1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Malekzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halali, M., Malekzadeh, M. An Investigation on the Effects of Experimental Variables on Silver Nano Particles Produced by Electromagnetic Levitation Technique. J Clust Sci 24, 635–642 (2013). https://doi.org/10.1007/s10876-012-0535-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0535-2

Keywords

Navigation