Skip to main content
Log in

Effective Immunological Guidance of Genetic Analyses Including Exome Sequencing in Patients Evaluated for Hemophagocytic Lymphohistiocytosis

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

We report our experience in using flow cytometry-based immunological screening prospectively as a decision tool for the use of genetic studies in the diagnostic approach to patients with hemophagocytic lymphohistiocytosis (HLH). We restricted genetic analysis largely to patients with abnormal immunological screening, but included whole exome sequencing (WES) for those with normal findings upon Sanger sequencing. Among 290 children with suspected HLH analyzed between 2010 and 2014 (including 17 affected, but asymptomatic siblings), 87/162 patients with “full” HLH and 79/111 patients with “incomplete/atypical” HLH had normal immunological screening results. In 10 patients, degranulation could not be tested. Among the 166 patients with normal screening, genetic analysis was not performed in 107 (all with uneventful follow-up), while 154 single gene tests by Sanger sequencing in the remaining 59 patients only identified a single atypical CHS patient. Flow cytometry correctly predicted all 29 patients with FHL-2, XLP1 or 2. Among 85 patients with defective NK degranulation (including 13 asymptomatic siblings), 70 were Sanger sequenced resulting in a genetic diagnosis in 55 (79%). Eight patients underwent WES, revealing mutations in two known and one unknown cytotoxicity genes and one metabolic disease. FHL3 was the most frequent genetic diagnosis. Immunological screening provided an excellent decision tool for the need and depth of genetic analysis of HLH patients and provided functionally relevant information for rapid patient classification, contributing to a significant reduction in the time from diagnosis to transplantation in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CHS:

Chediak-Higashi syndrome

CTL:

cytotoxic T cells

FHL:

familial hemophagocytic lymphohistiocytosis

GPOH:

group of the Society for Pediatric Oncology and Hematology

GS2:

Griscelli syndrome type 2

HLH:

hemophagocytic lymphohistiocytosis

HPS2:

Hermansky-Pudlak syndrome type 2

HSCT:

hematopoietic stem cell transplantation

LCH:

Langerhans cell histiocytosis

MAS-HLH:

Macrophage-activation syndrome

NGS:

next-generation sequencing

NK cell:

natural killer cell

PID:

primary immunodeficiency

WES:

whole exome sequencing

XLP:

X-linked lymphoproliferate syndrome

References

  1. Janka GE, Lehmberg K. Hemophagocytic syndromes--an update. Blood Rev. 2014;28:135–42.

    Article  PubMed  Google Scholar 

  2. Dotta L, Parolini S, Prandini A, Tabellini G, Antolini M, Kingsmore SF, et al. Clinical, laboratory and molecular signs of immunodeficiency in patients with partial oculo-cutaneous albinism. Orphanet J Rare Dis. 2013;8:168.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pachlopnik Schmid J, Canioni D, Moshous D, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117:1522–9.

    Article  PubMed  Google Scholar 

  4. Janka GE. Hemophagocytic syndromes. Blood Rev. 2007;21:245–53.

    Article  CAS  PubMed  Google Scholar 

  5. Cetica V, Pende D, Griffiths GM, Arico M. Molecular basis of familial hemophagocytic lymphohistiocytosis. Haematologica. 2010;95:538–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med. 2012;63:233–46.

    Article  CAS  PubMed  Google Scholar 

  7. Bode SF, Ammann S, Al-Herz W, et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015;100:978–88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Janka GE, Lehmberg K. Hemophagocytic lymphohistiocytosis: pathogenesis and treatment. Hematol Am Soc Hematol Educ Progr. 2013;2013:605–11.

    Google Scholar 

  9. Henter JI, Horne A, Arico M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.

    Article  PubMed  Google Scholar 

  10. Ouachee-Chardin M, Elie C, de Saint BG, et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics. 2006;117:e743–50.

    Article  PubMed  Google Scholar 

  11. Cesaro S, Locatelli F, Lanino E, et al. Hematopoietic stem cell transplantation for hemophagocytic lymphohistiocytosis: a retrospective analysis of data from the Italian Association of Pediatric Hematology Oncology (AIEOP). Haematologica. 2008;93:1694–701.

    Article  PubMed  Google Scholar 

  12. Bryceson YT, Pende D, Maul-Pavicic A, et al. A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood. 2012;119:2754–63.

    Article  CAS  PubMed  Google Scholar 

  13. Abdalgani M, Filipovich AH, Choo S, Zhang K, Gifford C, Villanueva J, et al. Accuracy of flow cytometric perforin screening for detecting patients with FHL due to PRF1 mutations. Blood. 2015;126:1858–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gifford CE, Weingartner E, Villanueva J, Johnson J, Zhang K, Filipovich AH, et al. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations. Cytometry B Clin Cytom. 2014;86:263–71.

    Article  PubMed  Google Scholar 

  15. Rubin TS, Zhang K, Gifford C, Lane A, Bleesing JJ, Marsh RA. Perforin and CD107a testing are superior to NK cell function testing for screening patients for genetic HLH. Blood. 2017. https://doi.org/10.1182/blood-2016-12-753830.

  16. Cetica V, Sieni E, Pende D, et al. Genetic predisposition to hemophagocytic lymphohistiocytosis: report on 500 patients from the Italian registry. J Allergy Clin Immunol. 2015; https://doi.org/10.1016/j.jaci.2015.06.048.

  17. Meeths M, Chiang SC, Wood SM, et al. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood. 2011;118:5783–93.

    Article  CAS  PubMed  Google Scholar 

  18. Entesarian M, Chiang SC, Schlums H, Meeths M, Chan MY, Mya SN, et al. Novel deep intronic and missense UNC13D mutations in familial haemophagocytic lymphohistiocytosis type 3. Br J Haematol. 2013;162:415–8.

    Article  CAS  PubMed  Google Scholar 

  19. zur Stadt U. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827–34.

    Article  PubMed  Google Scholar 

  20. Cetica V, Hackmann Y, Grieve S, et al. Patients with Griscelli syndrome and normal pigmentation identify RAB27A mutations that selectively disrupt MUNC13-4 binding. J Allergy Clin Immunol. 2015;135:1310–8.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ammann S, Schulz A, Krägeloh-Mann I, et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood. 2016; https://doi.org/10.1182/blood-2015-09-671636.

  22. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant. 2007;40:381–7.

    Article  CAS  PubMed  Google Scholar 

  23. Taurisano R, Maiorana A, De Benedetti F, Dionisi-Vici C, Boldrini R, Deodato F. Wolman disease associated with hemophagocytic lymphohistiocytosis: attempts for an explanation. Eur J Pediatr. 2014;173:1391–4.

    Article  PubMed  Google Scholar 

  24. Lehmberg K, Ehl S. Diagnostic evaluation of patients with suspected haemophagocytic lymphohistiocytosis. Br J Haematol. 2013;160:275–87.

    Article  CAS  PubMed  Google Scholar 

  25. zur Stadt U, Rohr J, Seifert W, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85:482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cote M, Menager MM, Burgess A, et al. Munc18-2 Deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119:3765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stranneheim H, Wedell A. Exome and genome sequencing: a revolution for the discovery and diagnosis of monogenic disorders. J Intern Med. 2016;279:3–15.

    Article  CAS  PubMed  Google Scholar 

  28. Nichols KE, Hom J, Gong S-Y, Ganguly A, Ma CS, Cannons JL, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med. 2005;11:340–5.

    Article  CAS  PubMed  Google Scholar 

  29. Ammann S, Elling R, Gyrd-Hansen M, et al. A new functional assay for the diagnosis of X-linked inhibitor of apoptosis (XIAP) deficiency. Clin Exp Immunol. 2014;176:394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meeths M, Horne A, Sabel M, Bryceson YT, Henter JI. Incidence and clinical presentation of primary hemophagocytic lymphohistiocytosis in Sweden. Pediatr Blood Cancer. 2014; https://doi.org/10.1002/pbc.25308.

  31. Lofstedt A, Chiang SC, Onelov E, Bryceson YT, Meeths M, Henter JI. Cancer risk in relatives of patients with a primary disorder of lymphocyte cytotoxicity: a retrospective cohort study. Lancet Haematol. 2015;2:e536–42.

    Article  PubMed  Google Scholar 

  32. Spessott WA, Sanmillan ML, McCormick ME, Patel N, Villanueva J, Zhang K, et al. Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood. 2015;125:1566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voskoboinik I, Sutton VR, Ciccone A, House CM, Chia J, Darcy PK, et al. Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood. 2007;110:1184–90.

    Article  CAS  PubMed  Google Scholar 

  34. Martinez-Pomar N, Lanio N, Romo N, Lopez-Botet M, Matamoros N. Functional impact of A91V mutation of the PRF1 perforin gene. Hum Immunol. 2013;74:14–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chou J, Ohsumi TK, Geha RS. Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2012;12:623–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families as well as all physicians participating in the GPOH HLH study. We are grateful to the team of the CCI Advanced Diagnostic Unit for their excellent work. We thank Manuela Adao for excellent technical assistance and Marcus Tetzlaff for reliable documentation, and Martin Mynarek for performing competing event analysis with R (all Hamburg, Germany).

The following physicians contributed substantially to the HLH study of the GPOH (Germany, Austria, Switzerland):

Martina Ahlmann (Münster), Roland Ammann (Bern, Switzerland), Uta Behrends (Munich), Rita Beier (Essen), Horst von Bernuth (Berlin), Karin Beutel (Munich), Birgit Burkhardt (Münster), Gunnar Cario (Kiel), Carl-Friedrich Classen (Rostock), Matthias Dürken (Mannheim), Martin Ebinger (Tübingen), Johann Greil (Heidelberg), Ute Groß-Wieltsch (Stuttgart), Bernd Gruhn (Jena), Wolfgang Holter (Vienna, Austria), Patrick Hundsdörfer (Berlin), Ingrid Kühnle (Göttingen), Norbert Jorch (Bielefeld), Reinhard Kolb (Oldenburg), Jörn-Sven Kühl (Berlin), Britta Maecker (Hannover), Roland Meisel (Düsseldorf), Milen Minkov (Wien), Ingo Müller (Hamburg), Tim Niehuis (Krefeld), Jana Pachlopnik-Schmid (Zurich, Switzerland), Arnulf Pekrun (Bremen), Aram Prokop (Cologne), Johannes Rischewski (Luzern, Switzerland), Irene Schmid (Munich), Ansgar Schulz (Ulm), Paul-Gerhardt Schlegel (Würzburg), Michael Schündeln (Essen), Markus Seidel (Graz, Austria), Thorsten Simon (Köln), Jan Sörensen (Frankfurt), Martin Chada (Erlangen), Meinolf Suttorp (Dresden), Wilhelm Woessmann (Giessen). Centers in Germany, unless otherwise specified.

Authorʼs Contributions

All authors gave input and approved the final version of the manuscript.

Sandra Ammann: Collected patient data, supervised routine immunological testing, performed additional confirmatory tests, drafted manuscript.

Kai Lehmberg: Coordinates the GPOH HLH study, collected patient data, drafted manuscript.

Udo zur Stadt: Performed sequencing and provided genetic data.

Christian Klemann: Collected patient data.

Sebastian Bode: Collected patient data.

Carsten Speckmann: Collected patient data.

Gritta Janka: Initiated the GPOH study.

Katharina Wustrau: collected patient data for transplantation study.

Mirzokhid Rakhmanov: Coordinated diagnostic testing.

Ilka Fuchs: Coordinated diagnostic testing.

Hans Christian Hennies: Performed whole exome sequencing.

Stephan Ehl: designed the study, coordinates the GPOH HLH study, drafted the manuscript.

Funding

This work was supported by grants from the DFG (EH 145/5-1 and SFB1160, TP1) and BMBF (01 EO 0803) to S.E., from the DFG (HE 3119/10-1) and the Köln Fortune Program of the Faculty of Medicine, University of Cologne to H.C.H.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Stephan Ehl.

Ethics declarations

Informed consent was obtained according to the institutional review board approval (University of Freiburg ethics committee’s protocol numbers 143/12 and 40/08).

Conflicts of Interest

SE has received consulting fees from UCB and Novartis, but not in relation to this study.

Electronic supplementary material

ESM 1

(PDF 67 kb).

ESM 2

(PPTX 91 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammann, S., Lehmberg, K., zur Stadt, U. et al. Effective Immunological Guidance of Genetic Analyses Including Exome Sequencing in Patients Evaluated for Hemophagocytic Lymphohistiocytosis. J Clin Immunol 37, 770–780 (2017). https://doi.org/10.1007/s10875-017-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-017-0443-1

Keywords