Skip to main content

Advertisement

Log in

Immunomodulation and AD – Down But Not Out

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in the elderly. Interventions that remove existing fibrillar and oligomeric amyloid-β (Aβ) are believed to be essential for the success of any attempt at stabilization of brain function and mitigation of cognitive decline. Many of these strategies have focused on Aβ vaccination and administration of anti-Aβ antibodies. Both active and passive immunotherapies have been successful in mouse models, but both have had limited effect in clinical trials. Intravenous immunoglobulin (IVIG) has been proposed as a potential treatment for AD following evidence for behavioral benefit in AD models and cognitive benefit in early phase 1 and phase 2 clinical trials. A phase 3 trial IVIG trial failed to meet its primary outcomes. While there was a statistically significant benefit in moderate stage AD patients who carried an APOE ε4 allele, this stabilization of cognition was evident only on neuropsychological examination. No benefit on activities of daily living was evident, therefore failing to qualify AD as a new indication for IVIG. Identifying the biologically active component (s) responsible for the neuropsychological benefit in APOE ε4-positive AD patients could enable the development of a compound with greater potency that would qualify for FDA (US Food and Drug Administration) registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Thies W, Bleiler L, Alzheimer’s A. 2013 Alzheimer's disease facts and figures. Alzheimer’s & dementia : the journal of the Alzheimer's Association. 2013;9(2):208–45.

    Article  Google Scholar 

  3. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991;12(10):383–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lublin AL, Gandy S. Amyloid-beta oligomers: possible roles as key neurotoxins in Alzheimer's Disease. The Mount Sinai journal of medicine, New York. 2010;77(1):43–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  7. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2007;27(11):2866–75.

    Article  CAS  Google Scholar 

  8. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62(6):788–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999;19(20):8876–84.

    CAS  Google Scholar 

  10. Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction. Neurobiol Dis. 2009;35(3):352–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7.

    Article  CAS  PubMed  Google Scholar 

  12. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 2000;408(6815):982–5.

    Article  CAS  PubMed  Google Scholar 

  13. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003;61(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  14. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6(8):916–9.

    Article  CAS  PubMed  Google Scholar 

  15. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370(4):322–33.

    Article  CAS  PubMed  Google Scholar 

  16. Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol. 2012;69(8):1002–10.

    Article  PubMed  Google Scholar 

  17. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science. 2002;295(5563):2264–7.

    Article  CAS  PubMed  Google Scholar 

  18. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer's disease model. Nat Neurosci. 2002;5(5):452–7.

    CAS  PubMed  Google Scholar 

  19. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370(4):311–21.

    Article  CAS  PubMed  Google Scholar 

  20. Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2012;8(4):261–71.

    Article  CAS  Google Scholar 

  21. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345(10):747–55.

    Article  CAS  PubMed  Google Scholar 

  22. Fillit H, Hess G, Hill J, Bonnet P, Toso C. IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology. 2009;73(3):180–5.

    Article  CAS  PubMed  Google Scholar 

  23. Dodel R, Hampel H, Depboylu C, Lin S, Gao F, Schock S, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer's disease. Ann Neurol. 2002;52(2):253–6.

    Article  CAS  PubMed  Google Scholar 

  24. Szabo P, Relkin N, Weksler ME. Natural human antibodies to amyloid beta peptide. Autoimmun Rev. 2008;7(6):415–20.

    Article  CAS  PubMed  Google Scholar 

  25. Weksler ME, Relkin N, Turkenich R, LaRusse S, Zhou L, Szabo P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol. 2002;37(7):943–8.

    Article  CAS  PubMed  Google Scholar 

  26. Dodel R, Balakrishnan K, Keyvani K, Deuster O, Neff F, Andrei-Selmer LC, et al. Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(15):5847–54.

    Article  CAS  Google Scholar 

  27. Du Y, Wei X, Dodel R, Sommer N, Hampel H, Gao F, et al. Human anti-beta-amyloid antibodies block beta-amyloid fibril formation and prevent beta-amyloid-induced neurotoxicity. Brain : a journal of neurology. 2003;126(Pt 9):1935–9.

    Article  Google Scholar 

  28. Gold M, Mengel D, Roskam S, Dodel R, Bach JP. Mechanisms of action of naturally occurring antibodies against beta-amyloid on microglia. J Neuroinflammation. 2013;10:5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Klaver AC, Finke JM, Digambaranath J, Balasubramaniam M, Loeffler DA. Antibody concentrations to Abeta1-42 monomer and soluble oligomers in untreated and antibody-antigen-dissociated intravenous immunoglobulin preparations. Int Immunopharmacol. 2010;10(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  30. Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res. 2006;84(2):434–43.

    Article  CAS  PubMed  Google Scholar 

  31. Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, et al. Human intravenous immunoglobulin provides protection against Abeta toxicity by multiple mechanisms in a mouse model of Alzheimer's disease. J Neuroinflammation. 2010;7:90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer's disease. J Neuroinflammation. 2012;9:105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gong B, Pan Y, Zhao W, Knable L, Vempati P, Begum S, et al. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer's disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol Immunol. 2013;56(4):619–29.

    Article  CAS  PubMed  Google Scholar 

  34. Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, et al. Intravenous immunoglobulins as a treatment for Alzheimer's disease: rationale and current evidence. Drugs. 2010;70(5):513–28.

    Article  CAS  PubMed  Google Scholar 

  35. Loeffler DA. Intravenous immunoglobulin and Alzheimer's disease: what now? J Neuroinflammation. 2013;10(1):70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004;75(10):1472–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging. 2009;30(11):1728–36.

    Article  CAS  PubMed  Google Scholar 

  38. Shayan G, Adamiak B, Relkin NR, Lee KH. Longitudinal analysis of novel Alzheimer's disease proteomic cerebrospinal fluid biomarkers during intravenous immunoglobulin therapy. Electrophoresis. 2012;33(13):1975–9.

    Article  CAS  PubMed  Google Scholar 

  39. Tsakanikas D, Shah K, Flores C, Assuras S, Relkin NR. P4-351: Effects of uninterrrupted intravenous immunoglobulin treatment of Alzheimer's disease for nine months. Alzheimer's & Dementia: The Journal of the Alzheimer's Association. 2008;4 (4):T776-T.

  40. Relkin N, Bettger L, Tsakanikas D, Ravdin L. Three-year follow-up on the IVIg for Alzheimer's phase II study. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2012;8(4):589.

    Article  Google Scholar 

  41. Dodel R, Rominger A, Bartenstein P, Barkhof F, Blennow K, Forster S, et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer's disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol. 2013;12(3):233–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight, E.M., Gandy, S. Immunomodulation and AD – Down But Not Out. J Clin Immunol 34 (Suppl 1), 70–73 (2014). https://doi.org/10.1007/s10875-014-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0039-y

Keywords

Navigation