Skip to main content

Advertisement

Log in

Inflammation-Induced Hepcidin is Associated with the Development of Anemia and Coronary Artery Lesions in Kawasaki Disease

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Kawasaki disease (KD) is a systemic febrile vasculitis complicated by coronary artery lesions (CAL). Anemia is common in patients with KD and is associated with a prolonged duration of active inflammation. Hepcidin is a central modulator of inflammation-associated anemia, acting via control of iron absorption and a direct inhibitory effect on erythropoiesis. The aims of this study were to investigate the role of inflammation-induced hepcidin in the development of anemia, the occurrence of CAL formation, and IVIG treatment response in patients with KD.

Methods

Eighty-six KD patients and 30 febrile controls were enrolled. Levels of interleukin (IL)-6 and serum hepcidin were measured in sera by enzyme-linked immunosorbent assay. Hemoglobin and serum iron levels were also measured.

Results

Hemoglobin and iron levels were lower in KD patients than in controls (p < 0.001 and p = 0.009, respectively). Serum hepcidin and IL-6 levels were higher in KD patients than in controls (both p < 0.001) before intravenous immunoglobulin (IVIG) treatment. After IVIG treatment, serum hepcidin, IL-6, and hemoglobin levels decreased significantly (all p < 0.001). In addition, the serum hepcidin levels before IVIG treatment were negatively correlated with hemoglobin levels after IVIG treatment (R = −0.188, p = 0.046) and positively correlated with the changes of hemoglobin levels after IVIG treatment (R = 0.269, p = 0.015). Furthermore, serum hepcidin levels were negatively correlated with serum iron levels (R = −0.412, p = 0.002), which were positively correlated with hemoglobin levels (R = 0.210, p = 0.045). Additionally, the change of hepcidin levels was associated with IVIG treatment response and the occurrence of CAL formation.

Conclusions

Inappropriately raised hepcidin levels impair iron metabolism and are associated with decreased hemoglobin levels in KD patients. Inflammation-induced hepcidin is associated with the development of anemia and disease outcomes in patients with KD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD. Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J. 2005;24(11):998–1004.

    Article  PubMed  Google Scholar 

  2. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2004;110(17):2747–71.

    Article  PubMed  Google Scholar 

  3. Alves NR, Magalhaes CM, Almeida Rde F, Santos RC, Gandolfi L, Pratesi R. Prospective study of Kawasaki disease complications: review of 115 cases. Rev Assoc Med Bras. 2011;57(3):295–300.

    Article  PubMed  Google Scholar 

  4. Fukushige J, Takahashi N, Ueda Y, Ueda K. Incidence and clinical features of incomplete Kawasaki disease. Acta Paediatr. 1994;83(10):1057–60.

    Article  PubMed  CAS  Google Scholar 

  5. Kuo HC, Wang CL, Liang CD, Yu HR, Chen HH, Wang L, et al. Persistent monocytosis after intravenous immunoglobulin therapy correlated with the development of coronary artery lesions in patients with Kawasaki disease. J Microbiol Immunol Infect. 2007;40(5):395–400.

    PubMed  Google Scholar 

  6. Kuo HC, Yang KD, Liang CD, Bong CN, Yu HR, Wang L, et al. The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol. 2007;18(4):354–9.

    Article  PubMed  Google Scholar 

  7. Nakagawa M, Watanabe N, Okuno M, Kondo M, Okagawa H, Taga T. Severe hemolytic anemia following high-dose intravenous immunoglobulin administration in a patient with Kawasaki disease. Am J Hematol. 2000;63(3):160–1.

    Article  PubMed  CAS  Google Scholar 

  8. Le NT, Richardson DR. Ferroportin1: a new iron export molecule? Int J Biochem Cell Biol. 2002;34(2):103–8.

    Article  PubMed  CAS  Google Scholar 

  9. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    Article  PubMed  CAS  Google Scholar 

  10. Cherian S, Forbes DA, Cook AG, Sanfilippo FM, Kemna EH, Swinkels DW, et al. An insight into the relationships between hepcidin, anemia, infections and inflammatory cytokines in pediatric refugees: a cross-sectional study. PLoS One. 2008;3(12):e4030.

    Article  PubMed  Google Scholar 

  11. Suganami Y, Kawashima H, Hasegawa D, Sato S, Hoshika A. Clinical application of rapid assay of serum interleukin-6 in Kawasaki disease. Pediatr Int. 2008;50(2):264–6.

    Article  PubMed  CAS  Google Scholar 

  12. Kishimoto S, Suda K, Teramachi Y, Nishino H, Kudo Y, Ishii H, et al. Increased plasma type B natriuretic peptide in the acute phase of Kawasaki disease. Pediatr Int. 2011;53(5):736–41.

    Article  PubMed  CAS  Google Scholar 

  13. Wu JM, Chiou YY, Hung WP, Chiu NT, Chen MJ, Wang JN. Urinary cytokines and renal Doppler study in Kawasaki disease. J Pediatr. 2010;156(5):792–7.

    Article  PubMed  CAS  Google Scholar 

  14. Song SN, Tomosugi N, Kawabata H, Ishikawa T, Nishikawa T, Yoshizaki K. Down-regulation of hepcidin resulting from long-term treatment with an anti-IL-6 receptor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman disease. Blood. 2010;116(18):3627–34.

    Article  PubMed  CAS  Google Scholar 

  15. Shulman ST, De Inocencio J, Hirsch R. Kawasaki disease. Pediatr Clin North Am. 1995;42(5):1205–22.

    PubMed  CAS  Google Scholar 

  16. Kuo HC, Yu HR, Juo SH, Yang KD, Wang YS, Liang CD, et al. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet. 2011;56(2):161–5.

    Article  PubMed  CAS  Google Scholar 

  17. Kuo HC, Liang CD, Wang CL, Yu HR, Hwang KP, Yang KD. Serum albumin level predicts initial intravenous immunoglobulin treatment failure in Kawasaki disease. Acta Paediatr. 2010;99(10):1578–83.

    Article  PubMed  Google Scholar 

  18. Girelli D, Trombini P, Busti F, Campostrini N, Sandri M, Pelucchi S, et al. A time course of hepcidin response to iron challenge in patients with HFE and TFR2 hemochromatosis. Haematologica. 2011;96(4):500–6.

    Article  PubMed  Google Scholar 

  19. Armitage AE, Eddowes LA, Gileadi U, Cole S, Spottiswoode N, Selvakumar TA, et al. Hepcidin regulation by innate immune and infectious stimuli. Blood. 2011;118(15):4129–39.

    Article  PubMed  Google Scholar 

  20. Abdel-Khalek MA, El-Barbary AM, Essa SA, Ghobashi AS. Serum hepcidin: a direct link between anemia of inflammation and coronary artery atherosclerosis in patients with rheumatoid arthritis. J Rheumatol. 2011;38(10):2153–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864–6.

    Article  PubMed  CAS  Google Scholar 

  22. Pietrangelo A, Dierssen U, Valli L, Garuti C, Rump A, Corradini E, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007;132(1):294–300.

    Article  PubMed  CAS  Google Scholar 

  23. Gupta M, Noel GJ, Schaefer M, Friedman D, Bussel J, Johann-Liang R. Cytokine modulation with immune gamma-globulin in peripheral blood of normal children and its implications in Kawasaki disease treatment. J Clin Immunol. 2001;21(3):193–9.

    Article  PubMed  CAS  Google Scholar 

  24. Taytawat P, Viravud Y, Plakornkul V, Roongruangchai J, Manoonpol C. Identification of the external laryngeal nerve: its anatomical relations to inferior constrictor muscle, superior thyroid artery, and superior pole of the thyroid gland in Thais. J Med Assoc Thai. 2010;93(8):961–8.

    PubMed  Google Scholar 

  25. Cullis JO. Diagnosis and management of anaemia of chronic disease: current status. Br J Haematol. 2011;154(3):289–300.

    Article  PubMed  Google Scholar 

  26. Sihler KC, Raghavendran K, Westerman M, Ye W, Napolitano LM. Hepcidin in trauma: linking injury, inflammation, and anemia. J Trauma. 2010;69(4):831–7.

    Article  PubMed  CAS  Google Scholar 

  27. de Mast Q, Nadjm B, Reyburn H, Kemna EH, Amos B, Laarakkers CM, et al. Assessment of urinary concentrations of hepcidin provides novel insight into disturbances in iron homeostasis during malarial infection. J Infect Dis. 2009;199(2):253–62.

    Article  PubMed  Google Scholar 

  28. Demirag MD, Haznedaroglu S, Sancak B, Konca C, Gulbahar O, Ozturk MA, et al. Circulating hepcidin in the crossroads of anemia and inflammation associated with rheumatoid arthritis. Intern Med. 2009;48(6):421–6.

    Article  PubMed  Google Scholar 

  29. Isoda M, Hanawa H, Watanabe R, Yoshida T, Toba K, Yoshida K, et al. Expression of the peptide hormone hepcidin increases in cardiomyocytes under myocarditis and myocardial infarction. J Nutr Biochem. 2010;21(8):749–56.

    Article  PubMed  CAS  Google Scholar 

  30. del Giudice EM, Santoro N, Amato A, Brienza C, Calabro P, Wiegerinck ET, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab. 2009;94(12):5102–7.

    Article  PubMed  Google Scholar 

  31. Dallalio G, Law E, Means Jr RT. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood. 2006;107(7):2702–4.

    Article  PubMed  CAS  Google Scholar 

  32. Frank GR, Cherrick I, Karayalcin G, Valderrama E, Lanzkowsky P. Transient erythroblastopenia in a child with Kawasaki syndrome: a case report. Am J Pediatr Hematol Oncol. 1994;16(3):271–4.

    Article  PubMed  CAS  Google Scholar 

  33. Kurtzhals JA, Rodrigues O, Addae M, Commey JO, Nkrumah FK, Hviid L. Reversible suppression of bone marrow response to erythropoietin in Plasmodium falciparum malaria. Br J Haematol. 1997;97(1):169–74.

    Article  PubMed  CAS  Google Scholar 

  34. Kim JJ, Hong YM, Yun SW, Han MK, Lee KY, Song MS, et al. Assessment of risk factors for Korean children with Kawasaki disease. Pediatr Cardiol. 2012. doi:10.1007/s00246-011-0143-1.

  35. Saeed O, Otsuka F, Polavarapu R, Karmali V, Weiss D, Davis T, et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(2):299–307.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Science Council Grant #NSC 99-2314-B-182A-032-MY2, NSC 100-2314-B-182A-048-MY3, and Chang Gung Memorial Hospital CMRPG8A021, Taiwan.

Conflicts of Interest

The authors have indicated that they have no financial relationships relevant to this article to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Hsien Huang.

Additional information

Ho-Chang Kuo and Ya-Ling Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, HC., Yang, YL., Chuang, JH. et al. Inflammation-Induced Hepcidin is Associated with the Development of Anemia and Coronary Artery Lesions in Kawasaki Disease. J Clin Immunol 32, 746–752 (2012). https://doi.org/10.1007/s10875-012-9668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9668-1

Keywords

Navigation