Skip to main content

Advertisement

Log in

Role of Macrophage Migration Inhibitory Factor in the Th2 Immune Response to Epicutaneous Sensitization

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

We examined the role of macrophage migration inhibitory factor (MIF) in the generation of the Th2 response using MIF-deficient mice in a model of epicutaneous sensitization to ovalbumin. Lymph node cells from sensitized MIF-deficient mice produce lower levels of Th2 cytokines after antigen challenge when compared to their wild-type counterparts. Sensitized mice lacking MIF show less pulmonary inflammation after intranasal antigen exposure. Mice deficient in CD74, the MIF receptor, also are unable to generate an inflammatory response to epicutaneous sensitization. Examination of the elicitation phase of the atopic response using DO11.10 OVA TCR transgenic animals shows that T cell proliferation and IL-2 production are strongly impaired in MIF-deficient T cells. This defect is most profound when both T cells and antigen-presenting cells are lacking MIF. These data suggest that MIF is crucial both for the sensitization and the elicitation phases of a Th2-type immune response in allergic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

APCs:

Antigen-presenting cells

BAL:

Bronchoalveolar lavage

EC:

Epicutaneous

ERK 1/2:

Extracellular signal-regulated kinase

IFN-γ:

Interferon-gamma

IL:

Interleukin

IN:

Intranasal

IP:

Intraperitoneal

LN:

Lymph node

MHC:

Major histocompatibility complex

MIF:

Macrophage migration inhibitory factor

TCR:

T cell receptor

TNCB:

Trinitrochlorobenzene

TLR:

Toll-like receptor

References

  1. Hamid Q, Naseer T, Minshall EM, Song YL, Boguniewicz M, Leung DY. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol. 1996;98:225–31.

    Article  PubMed  CAS  Google Scholar 

  2. Huang SK, Xiao HQ, Kleine-Tebbe J, Paciotti G, Marsh DG, Lichtenstein LM, et al. IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol. 1995;155:2688–94.

    PubMed  CAS  Google Scholar 

  3. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326:298–304.

    Article  PubMed  CAS  Google Scholar 

  4. van Reijsen FC, Bruijnzeel-Koomen CA, Kalthoff FS, Maggi E, Romagnani S, Westland JK, et al. Skin-derived aeroallergen-specific T-cell clones of Th2 phenotype in patients with atopic dermatitis. J Allergy Clin Immunol. 1992;90:184–93.

    Article  PubMed  Google Scholar 

  5. Robinson D, Hamid Q, Bentley A, Ying S, Kay AB, Durham SR. Activation of CD4+ T cells, increased TH2-type cytokine mRNA expression, and eosinophil recruitment in bronchoalveolar lavage after allergen inhalation challenge in patients with atopic asthma. J Allergy Clin Immunol. 1993;92:313–24.

    Article  PubMed  CAS  Google Scholar 

  6. Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994;94:870–6.

    Article  PubMed  CAS  Google Scholar 

  7. Brombacher F. The role of interleukin-13 in infectious diseases and allergy. Bioessays. 2000;22:646–56.

    Article  PubMed  CAS  Google Scholar 

  8. Doherty TM, Kastelein R, Menon S, Andrade S, Coffman RL. Modulation of murine macrophage function by IL-13. J Immunol. 1993;151:7151–60.

    PubMed  CAS  Google Scholar 

  9. Finkelman FD, Katona IM, Urban Jr JF, Holmes J, Ohara J, Tung AS, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988;141:2335–41.

    PubMed  CAS  Google Scholar 

  10. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282:2261–3.

    Article  PubMed  CAS  Google Scholar 

  11. McKenzie AN, Culpepper JA, de Waal Malefyt R, Briere F, Punnonen J, Aversa G, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci U S A. 1993;90:3735–9.

    Article  PubMed  CAS  Google Scholar 

  12. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, et al. Interleukin-13: central mediator of allergic asthma. Science. 1998;282:2258–61.

    Article  PubMed  CAS  Google Scholar 

  13. Zurawski SM, Chomarat P, Djossou O, Bidaud C, McKenzie AN, Miossec P, et al. The primary binding subunit of the human interleukin-4 receptor is also a component of the interleukin-13 receptor. J Biol Chem. 1995;270:13869–78.

    Article  PubMed  CAS  Google Scholar 

  14. Lin JX, Migone TS, Tsang M, Friedmann M, Weatherbee JA, Zhou L, et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity. 1995;2:331–9.

    Article  PubMed  CAS  Google Scholar 

  15. Smerz-Bertling C, Duschl A. Both interleukin 4 and interleukin 13 induce tyrosine phosphorylation of the 140-kDa subunit of the interleukin 4 receptor. J Biol Chem. 1995;270:966–70.

    Article  PubMed  CAS  Google Scholar 

  16. Swain SL, Weinberg AD, English M, Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 1990;145:3796–806.

    PubMed  CAS  Google Scholar 

  17. Zurawski G, de Vries JE. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994;15:19–26.

    Article  PubMed  CAS  Google Scholar 

  18. Herrick CA, MacLeod H, Glusac E, Tigelaar RE, Bottomly K. Th2 responses induced by epicutaneous or inhalational protein exposure are differentially dependent on IL-4. J Clin Invest. 2000;105:765–75.

    Article  PubMed  CAS  Google Scholar 

  19. Herrick CA, Xu L, McKenzie AN, Tigelaar RE, Bottomly K. IL-13 is necessary, not simply sufficient, for epicutaneously induced Th2 responses to soluble protein antigen. J Immunol. 2003;170:2488–95.

    PubMed  CAS  Google Scholar 

  20. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195–201.

    Article  PubMed  CAS  Google Scholar 

  21. Lee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med. 1997;185:2143–56.

    Article  PubMed  CAS  Google Scholar 

  22. Resnick MB, Weller PF. Mechanisms of eosinophil recruitment. Am J Respir Cell Mol Biol. 1993;8:349–55.

    PubMed  CAS  Google Scholar 

  23. Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S, et al. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med. 1988;167:1737–42.

    Article  PubMed  CAS  Google Scholar 

  24. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med. 1988;167:43–56.

    Article  PubMed  CAS  Google Scholar 

  25. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89:587–96.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 2006;16:3–10.

    Article  PubMed  CAS  Google Scholar 

  27. Chapoval S, Dasgupta P, Dorsey NJ, Keegan AD. Regulation of the T helper cell type 2 (Th2)/T regulatory cell (Treg) balance by IL-4 and STAT6. J Leukoc Biol. 2010;87:1011–8.

    Article  PubMed  CAS  Google Scholar 

  28. Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA. 2005;102:5138–43.

    Article  PubMed  CAS  Google Scholar 

  29. Choi JM, Shin JH, Sohn MH, Harding MJ, Park JH, Tobiasova Z, et al. Cell-permeable Foxp3 protein alleviates autoimmune disease associated with inflammatory bowel disease and allergic airway inflammation. Proc Natl Acad Sci USA. 2010;107:18575–80.

    Article  PubMed  CAS  Google Scholar 

  30. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966;153:80–2.

    Article  PubMed  CAS  Google Scholar 

  31. David JR. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA. 1966;56:72–7.

    Article  PubMed  CAS  Google Scholar 

  32. Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999;274:18100–6.

    Article  PubMed  CAS  Google Scholar 

  33. Roger T, David J, Glauser MP, Calandra T. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature. 2001;414:920–4.

    Article  PubMed  CAS  Google Scholar 

  34. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190:1375–82.

    Article  PubMed  CAS  Google Scholar 

  35. Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci USA. 2002;99:345–50.

    Article  PubMed  CAS  Google Scholar 

  36. Bucala R. MIF re-discovered: pituitary hormone and glucocorticoid-induced regulator of cytokine production. Cytokine Growth Factor Rev. 1996;7:19–24.

    Article  PubMed  CAS  Google Scholar 

  37. Nishihira J. Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res. 2000;20:751–62.

    Article  PubMed  CAS  Google Scholar 

  38. Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, et al. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci USA. 1996;93:7849–54.

    Article  PubMed  CAS  Google Scholar 

  39. Shimizu T, Abe R, Nishihira J, Shibaki A, Watanabe H, Nakayama T, et al. Impaired contact hypersensitivity in macrophage migration inhibitory factor-deficient mice. Eur J Immunol. 2003;33:1478–87.

    Article  PubMed  CAS  Google Scholar 

  40. Bernhagen J, Bacher M, Calandra T, Metz CN, Doty SB, Donnelly T, et al. An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction. J Exp Med. 1996;183:277–82.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamaru Y, Oridate N, Nishihira J, Takagi D, Furuta Y, Fukuda S. Macrophage migration inhibitory factor (MIF) contributes to the development of allergic rhinitis. Cytokine. 2005;31:103–8.

    Article  PubMed  CAS  Google Scholar 

  42. Mizue Y, Ghani S, Leng L, McDonald C, Kong P, Baugh J, et al. Role for macrophage migration inhibitory factor in asthma. Proc Natl Acad Sci USA. 2005;102:14410–5.

    Article  PubMed  CAS  Google Scholar 

  43. Wang B, Huang X, Wolters PJ, Sun J, Kitamoto S, Yang M, et al. Cutting edge: deficiency of macrophage migration inhibitory factor impairs murine airway allergic responses. J Immunol. 2006;177:5779–84.

    PubMed  CAS  Google Scholar 

  44. Yoshihisa Y, Makino T, Matsunaga K, Honda A, Norisugi O, Abe R, Shimizu H, and Shimizu T. Macrophage migration inhibitory factor is essential for eosinophil recruitment in allergen-induced skin inflammation. J Invest Dermatol. 2011;131:925–931

    Google Scholar 

  45. Hizawa N, Yamaguchi E, Takahashi D, Nishihira J, Nishimura M. Functional polymorphisms in the promoter region of macrophage migration inhibitory factor and atopy. Am J Respir Crit Care Med. 2004;169:1014–8.

    Article  PubMed  Google Scholar 

  46. Wu J, Fu S, Ren X, Jin Y, Huang X, Zhang X, et al. Association of MIF promoter polymorphisms with childhood asthma in a northeastern Chinese population. Tissue Antigens. 2009;73:302–6.

    Article  PubMed  CAS  Google Scholar 

  47. Shimizu T, Abe R, Nakamura H, Ohkawara A, Suzuki M, Nishihira J. High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem Biophys Res Commun. 1999;264:751–8.

    Article  PubMed  CAS  Google Scholar 

  48. Shimizu T, Abe R, Ohkawara A, Mizue Y, Nishihira J. Macrophage migration inhibitory factor is an essential immunoregulatory cytokine in atopic dermatitis. Biochem Biophys Res Commun. 1997;240:173–8.

    Article  PubMed  CAS  Google Scholar 

  49. Shimizu T, Abe R, Ohkawara A, Nishihira J. Increased production of macrophage migration inhibitory factor by PBMCs of atopic dermatitis. J Allergy Clin Immunol. 1999;104:659–64.

    Article  PubMed  CAS  Google Scholar 

  50. Rossi AG, Haslett C, Hirani N, Greening AP, Rahman I, Metz CN, et al. Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF). Potential role in asthma. J Clin Invest. 1998;101:2869–74.

    Article  PubMed  CAS  Google Scholar 

  51. Yamaguchi E, Nishihira J, Shimizu T, Takahashi T, Kitashiro N, Hizawa N, et al. Macrophage migration inhibitory factor (MIF) in bronchial asthma. Clin Exp Allergy. 2000;30:1244–9.

    Article  PubMed  CAS  Google Scholar 

  52. Chen PF, Luo YL, Wang W, Wang JX, Lai WY, Hu SM, et al. ISO-1, a macrophage migration inhibitory factor antagonist, inhibits airway remodeling in a murine model of chronic asthma. Mol Med. 2010;16:400–8.

    Article  PubMed  CAS  Google Scholar 

  53. Amano T, Nishihira J, Miki I. Blockade of macrophage migration inhibitory factor (MIF) prevents the antigen-induced response in a murine model of allergic airway inflammation. Inflamm Res. 2007;56:24–31.

    Article  PubMed  CAS  Google Scholar 

  54. Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112:S118–27.

    Article  PubMed  Google Scholar 

  55. Bozza M, Satoskar AR, Lin G, Lu B, Humbles AA, Gerard C, et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med. 1999;189:341–6.

    Article  PubMed  CAS  Google Scholar 

  56. Shachar I, Flavell RA. Requirement for invariant chain in B cell maturation and function. Science. 1996;274:106–8.

    Article  PubMed  CAS  Google Scholar 

  57. Koni PA, Flavell RA. Lymph node germinal centers form in the absence of follicular dendritic cell networks. J Exp Med. 1999;189:855–64.

    Article  PubMed  CAS  Google Scholar 

  58. Levin D, Constant S, Pasqualini T, Flavell R, Bottomly K. Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol. 1993;151:6742–50.

    PubMed  CAS  Google Scholar 

  59. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–8.

    Article  PubMed  CAS  Google Scholar 

  60. Click RE, Benck L, Alter BJ. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell Immunol. 1972;3:264–76.

    Article  PubMed  CAS  Google Scholar 

  61. Mukherjee S, Ahmed A, Malu S, Nandi D. Modulation of cell cycle progression by CTLA4-CD80/CD86 interactions on CD4+ T cells depends on strength of the CD3 signal: critical role for IL-2. J Leukoc Biol. 2006;80:66–74.

    Article  PubMed  CAS  Google Scholar 

  62. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, et al. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197:1467–76.

    Article  PubMed  CAS  Google Scholar 

  63. Shi X, Leng L, Wang T, Wang W, Du X, Li J, et al. CD44 is the signaling component of the macrophage migration inhibitory factor–CD74 receptor complex. Immunity. 2006;25:595–606.

    Article  PubMed  CAS  Google Scholar 

  64. Topilski I, Harmelin A, Flavell RA, Levo Y, Shachar I. Preferential Th1 immune response in invariant chain-deficient mice. J Immunol. 2002;168:1610–7.

    PubMed  CAS  Google Scholar 

  65. Coleman AM, Rendon BE, Zhao M, Qian MW, Bucala R, Xin D, et al. Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase. J Immunol. 2008;181:2330–7.

    PubMed  CAS  Google Scholar 

  66. Cohn L, Homer RJ, Marinov A, Rankin J, Bottomly K. Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med. 1997;186:1737–47.

    Article  PubMed  CAS  Google Scholar 

  67. Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105:99–106; quiz 107–109, 117

    Google Scholar 

  68. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377:68–71.

    Article  PubMed  CAS  Google Scholar 

  69. Akei HS, Brandt EB, Mishra A, Strait RT, Finkelman FD, Warrier MR, et al. Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses. J Allergy Clin Immunol. 2006;118:62–9.

    Article  PubMed  CAS  Google Scholar 

  70. Jin H, Kumar L, Mathias C, Zurakowski D, Oettgen H, Gorelik L, et al. Toll-like receptor 2 is important for the T(H)1 response to cutaneous sensitization. J Allergy Clin Immunol. 2009;123:875–82. e871.

    Article  PubMed  CAS  Google Scholar 

  71. Fingerle-Rowson G, Petrenko O, Metz CN, Forsthuber TG, Mitchell R, Huss R, et al. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proc Natl Acad Sci USA. 2003;100:9354–9.

    Article  PubMed  CAS  Google Scholar 

  72. Xie L, Qiao X, Wu Y, Tang J. β-Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One. 2011;6(1):e16428.

    Article  PubMed  CAS  Google Scholar 

  73. Lue H, Dewor M, Leng L, Bucala R, Bernhagen J. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal. 2010;23:135–44.

    Article  PubMed  Google Scholar 

  74. Flaster H, Bernhagen J, Calandra T, Bucala R. The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol Endocrinol. 2007;21:1267–80.

    Article  PubMed  CAS  Google Scholar 

  75. Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol. 2006;177:5687–96.

    PubMed  CAS  Google Scholar 

  76. Park SK, Cho MK, Park HK, Lee KH, Lee SJ, Choi SH, et al. Macrophage migration inhibitory factor homologs of Anisakis simplex suppress Th2 response in allergic airway inflammation model via CD4+CD25+Foxp3+ T cell recruitment. J Immunol. 2009;182:6907–14.

    Article  PubMed  CAS  Google Scholar 

  77. Lolis E, Bucala R. Therapeutic approaches to innate immunity: severe sepsis and septic shock. Nat Rev Drug Discov. 2003;2:635–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jason Griffith for providing thoughtful discussions and insights, and Idit Shachar of the Weizmann Institute, Rehovot, Israel, for providing the BALB/c CD74-KO mice. We also acknowledge the following grant support: RD NIH grant 2 T32 AR 007107-36 and Yale-New Haven Hospital William Wirt Winchester Grant, RB NIH grants AR050498 and AR049610, CH NIH grant AI069396, and NIH Grant T30-AR07016, Dermatology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bucala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R., Moss, J.E., Robinson, E. et al. Role of Macrophage Migration Inhibitory Factor in the Th2 Immune Response to Epicutaneous Sensitization. J Clin Immunol 31, 666–680 (2011). https://doi.org/10.1007/s10875-011-9541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9541-7

Keywords

Navigation