Skip to main content
Log in

Seasonal variability in carbon demand and flux by mesozooplankton communities at subarctic and subtropical sites in the western North Pacific Ocean

  • Special Section: Original Article
  • K2S1 project
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We investigated seasonal changes in carbon demand and flux by mesozooplankton communities at subtropical (S1) and subarctic sites (K2) in the western North Pacific Ocean to compare the impact of mesozooplankton communities on the carbon budget in surface and mesopelagic layers. Fecal pellet fluxes were one order higher at K2 than at S1, and seemed to be enhanced by copepod and euphausiid egestion under high chlorophyll a concentrations. The decrease in pellet volume and the lack of any substantial change in shape composition during sink suggest a decline in fecal pellet flux due to coprorhexy and coprophagy. While respiratory and excretory carbon by diel migrants at depth (i.e., active carbon flux) was similar between the two sites, the actively transported carbon exceeded sinking fecal pellets at S1. Mesozooplankton carbon demand in surface and mesopelagic layers was higher at K2 than S1, and an excess of demand to primary production and sinking POC flux was found during some seasons at K2. We propose that this demand was met by supplementary carbon sources such as feeding on protozoans and fecal pellets at the surface and carnivory of migrants at mesopelagic depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe Y, Natsuike M, Matsuno M, Terui T, Yamaguchi A, Imai I (2013) Variation in assimilation efficiencies of dominant Neocalanus and Eucalanus copepods in the subarctic Pacific: consequences for population structure models. J Exp Mar Biol Ecol 449:321–329

    Article  Google Scholar 

  • Al-Mutairi H, Landry MR (2001) Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep-Sea Res II 48:2083–2103

    Article  Google Scholar 

  • Arístegui J, Duarte CM, Agustí S, Doval M, Álvarez-Salgado XA, Hansell DA (2002) Dissolved organic carbon support of respiration in the dark ocean. Science 298:1967

    Article  Google Scholar 

  • Ayukai T, Hattori H (1992) Production and downward flux of zooplankton fecal pellets in the anticyclonic gyre off Shikoku, Japan. Oceanol Acta 15:163–172

    Google Scholar 

  • Bedo AW, Acuña JL, Robins D, Harris RP (1993) Grazing in the micron and the sub-micron particle size range: the case of Oikopleura dioica (Appendicularia). Bull Mar Sci 53:2–14

    Google Scholar 

  • Borgne Le (1982) Zooplankton production in the eastern tropical Atlantic Ocean: net growth efficiency and P: B in terms of carbon, nitrogen, and phosphorous. Limnol Oceanogr 27:681–698

    Article  Google Scholar 

  • Bradford-Grieve JM, Nodder SD, Jillett KB, Currie K, Lassey KR (2001) Potential contribution that the copepod Neocalanus tonsus makes to downward carbon flux in the Southern Ocean. J Plankton Res 23:963–975

    Article  Google Scholar 

  • Buesseler KO, Boyd PW (2009) Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol Oceanogr 54:1210–1232

    Article  Google Scholar 

  • Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, DeHairs F, Karl DM, Siegel D, Silver MW, Steinberg DK, Valdez J, Van Mooy B, Wilson SE (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570

    Article  Google Scholar 

  • Chisholm SW (2000) Oceanography: stirring times in the Southern Ocean. Nature 407:685–687

    Article  Google Scholar 

  • Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiol 167(168):127–142

    Article  Google Scholar 

  • Dagg MJ (1993) Sinking particles as a possible source of nutrition for the large calanoid copepod Neocalanus cristatus in the subarctic Pacific Ocean. Deep-Sea Res I 40:1431–1445

    Article  Google Scholar 

  • Deibel D, Lee SH (1992) Retention efficiency of sub-micrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleuira vanhoeffeni. Mar Ecol Prog Ser 81:25–30

    Article  Google Scholar 

  • Doi H, Kobari T, Fukumori K, Nishibe Y, Nakano S-I (2010) Trophic niche breadth variability differs among three Neocalanus species in the subarctic Pacific Ocean. J Plankton Res 32:1733–1737

    Article  Google Scholar 

  • Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr 16:147–194

    Article  Google Scholar 

  • Fowler SW, Small LF, LaRosa J (1991) Seasonal particulate carbon flux in the coastal northwestern Mediterranean Sea, and the role of zooplankton fecal matter. Oceanol Acta 14:77–85

    Google Scholar 

  • Frost BW, Landry MR, Hassett RP (1983) Feeding behavior of large calanoid copepods Neocalanus cristatus and N. plumchrus from the subarctic Pacific Ocean. Deep-Sea Res 30:1–13

    Article  Google Scholar 

  • Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) The seasonal cycle of phytoplankton community structure and photo-physiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59:887–900

    Article  Google Scholar 

  • Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C, Boutrif M, Zubkov MV, Marsay CM, Henson SA, Saw K, Cook K, Mayor DJ (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507:480–483

    Article  Google Scholar 

  • Gifford DJ (1993) Protozoa in the diets of Neocalanus spp. in the oceanic subarctic Pacific Ocean. Prog Oceanogr 32:223–237

    Article  Google Scholar 

  • Gleiber MR, Steinberg DK, Ducklow HW (2012) Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar Ecol Prog Ser 471:23–36

    Article  Google Scholar 

  • Gnaiger E (1983) Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In: Gnaiger E, Forstner H (eds) Polarogranic oxygen sensors. Springer, Berlin, pp 337–345

    Chapter  Google Scholar 

  • González HE, Smetacek V (1994) The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material. Mar Ecol Prog Ser 113:233–246

    Article  Google Scholar 

  • Gowing MM, Garrison DL, Kunze HB, Winchell CJ (2001) Biological components of Ross Sea short-term particle fluxes in the austral summer of 1995–1996. Deep-Sea Res I 48:2645–2671

    Article  Google Scholar 

  • Greene CH, Landry MR (1988) Carnivorous suspension feeding by the subarctic calanold copepod Neocalanus cnstatus. Can J Fish Aquat Sci 45:1069–1074

    Article  Google Scholar 

  • Honda MC, Kawakami H, Matsumoto K, Fujiki T, Mino Y, Sukigara C, Kobari T, Uchimiya M, Kaneko R, Saino T (2015) Comparison of sinking particle upper 200 m between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiment. J Oceanogr. doi:10.1007/s2-015-0289-x

    Google Scholar 

  • Ikeda T (1985) Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar Biol 85:1–11

    Article  Google Scholar 

  • Ikeda T, Sano F, Yamaguchi A (2007) Respiration in marine pelagic copepods: a global-bathymetric model. Mar Ecol Prog Ser 339:215–219

    Article  Google Scholar 

  • Ikeda T, Shiga N, Yamaguchi A (2008) Structure, biomass distribution and trophodynamics of the Pelagic ecosystem in the Oyashio Region, Western Subarctic Pacific. J Oceanogr 64:339–354

    Article  Google Scholar 

  • Iversen MH, Poulsen LK (2007) Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongates, and Oithona similis. Mar Ecol Prog Ser 350:79–89

    Article  Google Scholar 

  • Iversen MH, Nowald N, Ploug H, Jackson GA, Fischer G (2010) High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: degradation processes and ballasting effects. Deep-Sea Res I 57:771–784

    Article  Google Scholar 

  • Kitamura M, Kobari T, Honda MC, Matsumoto K, Sasaoka K, Nakamura R, Tanabe K (2016) Seasonal changes in the mesozooplankton biomass and community structure in subarctic and subtropical time-series stations in the western North Pacific. J Oceanogr. doi:10.1007/s10872-015-0347-8

  • Knauer GA, Martin JH, Bruland KW (1979) Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res A 26:97–108

    Article  Google Scholar 

  • Kobari T, Ikeda T (1999) Vertical distribution, population structure and life cycle of Neocalanus cristatus (Crustacea: Copepoda) in the Oyashio region, with notes on its regional variations. Mar Biol 134:683–696

    Article  Google Scholar 

  • Kobari T, Ikeda T (2001a) Life cycle of Neocalanus flemingeri (Crustacea: Copepoda) in the Oyashio region, western subarctic Pacific, with notes on its regional variations. Mar Ecol Prog Ser 209:243–255

    Article  Google Scholar 

  • Kobari T, Ikeda T (2001b) Ontogenetic vertical migration and life cycle of Neocalanus plumchrus (Crustacea: Copepoda) in the Oyashio region, with notes on regional variations in body size. J Plankton Res 23:287–302

    Article  Google Scholar 

  • Kobari T, Shinada A, Tsuda A (2003) Functional roles of interzonal migrating mesozooplankton in the western subarctic Pacific. Prog Oceanogr 57:279–298

    Article  Google Scholar 

  • Kobari T, Moku M, Takahashi K (2008a) Seasonal appearance of expatriated boreal copepods in the Oyashio-Kuroshio mixed region. ICES J Mar Sci 65:469–476

    Article  Google Scholar 

  • Kobari T, Steinberg DK, Ueda A, Tsuda A, Silver MW, Kitamura M (2008b) Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep-Sea Res II 55:1648–1660

    Article  Google Scholar 

  • Kobari T, Akamatsu H, Minowa M, Ichikawa T, Iseki K, Fukuda R, Higashi M (2010) Effects of the copepod community structure on fecal pellet flux in Kagoshima Bay, a deep, semi-enclosed embayment. J Oceanogr 66:673–684

    Article  Google Scholar 

  • Kobari T, Kitamura M, Minowa M, Isami H, Akamatsu H, Kawakami H, Matsumoto K, Wakita M, Honda MC (2013) Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans. Deep-Sea Res I 81:78–88

    Article  Google Scholar 

  • Lampitt RS, Noji TT, von Bodungen B (1990) What happens to zooplankton faecal pellets? Implications for material flux. Mar Biol 104:15–23

    Article  Google Scholar 

  • Lane PVZ, Smith SL, Urban JL, Biscayn PE (1994) Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight. Deep-Sea Res II 41:437–457

    Article  Google Scholar 

  • Liu H, Dagg MJ, Strom S (2005) Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska. J Plankton Res 27:647–662

    Article  Google Scholar 

  • Longhurst AR, Bedo AW, Harrison WG, Head EJH, Sameoto DD (1990) Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res. 37(4):685–694

    Article  Google Scholar 

  • Longhurst A, Williams R (1992) Carbon flux by seasonal vertical migrant copepods is small number. J Plankton Res 14:1495–1509

    Article  Google Scholar 

  • Mackas DL, Tsuda A (1998) Mesozooplankton in the eastern and western subarctic Pacific: community structure, seasonal life histories, and interannual variability. Prog Oceanogr 43:335–363

    Article  Google Scholar 

  • Maita Y, Odate T, Yanada M (1988) Vertical transport of organic carbon by sinking particles and the role of zoo- and phytogenic matters in neritic waters. Bull Fac Fish Hokkaido Univ 39:265–274

    Google Scholar 

  • Martens P (1978) Faecal pellets. FichIdent Zooplancton 162:1–4

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285

    Article  Google Scholar 

  • Matsumoto K, Honda CM, Sasaoka K, Wakita M, Kawakami H, Watanabe S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res 119:6523–6534

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  • McDonnel AMP, Buesseler KO (2010) Variability in the average sinking velocity of marine particles. Limnol Oceanogr 55:2085–2096

    Article  Google Scholar 

  • McGowan JA, Walker PW (1979) Structure in the copepod community of the North Pacific central gyre. Ecol Monogr 49:195–226

    Article  Google Scholar 

  • McGowan JA, Walker PW (1985) Dominance and diversity maintenance in an oceanic ecosystem. Ecol Monogr 55:103–118

    Article  Google Scholar 

  • Miller CB, Clemons MJ (1988) Revised life history analysis for large grazing copepods in the subarctic Pacific Ocean. Prog Oceanogr 20:293–313

    Article  Google Scholar 

  • Miller CB, Frost BW, Batchelder HP, Clemons MJ, Conway RE (1984) Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the northeast Pacific. Prog Oceanogr 13:201–243

    Article  Google Scholar 

  • Noji TT, Estep KW, MacIntyre F, Norrbin F (1991) Image analysis of faecal material grazed upon by three species of copepods: evidence for coprohexy, coprophagy, and coprochaly. J Mar Biol Ass United Kingdom 71:465–480

    Article  Google Scholar 

  • Pace ML, Knauer GA, Karl DM, Martin JH (1987) Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature 325:803–804

    Article  Google Scholar 

  • Padmavati G, Ikeda T, Yamaguchi A (2004) Life cycle, population structure and vertical distribution of Metridia spp. (Calanoida: Copepoda) in the Oyashio region (NW Pacific Ocean). Mar Ecol Prog Ser 270:181–198

    Article  Google Scholar 

  • Paffenhöfer G-A, Knowles SA (1979) Ecological implications of fecal pellet size, production and consumption by copepods. J Mar Res 37:35–49

    Google Scholar 

  • Paffenhöfer G-A, Strickland JDH (1970) A note on the feeding of Calanus helgolandicus on detritus. Mar Biol 5:97–99

    Article  Google Scholar 

  • Parsons TR, Lalli CM (1988) Comparative oceanic ecology of the plankton communities of the subarctic Atlantic and Pacific Oceans. Oceanogr Mar Biol Ann Rev 26:317–359

    Google Scholar 

  • Poulsen LK, Iversen MH (2008) Degradation of copepod fecal pellets: key role of protozooplankton. Mar Ecol Prog Ser 367:1–13

    Article  Google Scholar 

  • Poulsen LK, Kiørboe T (2006) Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar Ecol Prog Ser 323:195–204

    Article  Google Scholar 

  • Roy S, Silverberg N, Romero N, Deibel D, Kleine B, Savenkofff C, Vézinaf A, Tremblaye J-É, Legendree L, Rivkind RB (2000) Importance of mesozooplankton feeding for the downward flux of biogenic carbon in the Gulf of St. Lawrence (Canada). Deep-Sea Res II 47:519–544

    Article  Google Scholar 

  • Sherr EB, Barry F, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Ant Leeuwen 81:293–308

    Article  Google Scholar 

  • Shimode S, Hiroe Y, Hidaka K, Takahashi K, Tsuda A (2009) Life history and ontogenetic vertical migration of Neocalanus gracilis in the western North Pacific Ocean. Aquat Biol 7:295–306

    Article  Google Scholar 

  • Shimode S, Takahashi K, Shimizu Y, Nonomura T, Tsuda A (2012a) Distribution and life history of the planktonic copepod, Eucalanus californicus, in the northwestern Pacific: mechanisms for population maintenance within a high primary production area. Prog Oceanogr 86:1–13

    Article  Google Scholar 

  • Shimode S, Takahashi K, Shimizu Y, Nonomura T, Tsuda A (2012b) Distribution and life history of two planktonic copepods, Rhincalanus nasutus and Rhincalanus rostrifrons, in the northwestern Pacific Ocean. Deep-Sea Res I 65:133–145

    Article  Google Scholar 

  • Shoden S, Ikeda T, Yamaguchi A (2005) Vertical distribution, population structure and lifecycle of Eucalanus bungii (Copepoda: Calanoida) in the Oyashio region, with notes on its regional variations. Mar Biol 146:497–511

    Article  Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF (2000) Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res I 47:137–158

    Article  Google Scholar 

  • Steinberg DK, Cope JS, Wilson SE, Kobari T (2008a) A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res II 55:1615–1635

    Article  Google Scholar 

  • Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM (2008b) Microbial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr 53:1327–1338

    Article  Google Scholar 

  • Steinberg DK, Lomas MW, Cope JS (2012) Long-term increase in mesozooplankton biomass in the Sargasso Sea: linkage to climate and implications for food web dynamics and biogeochemical cycling. Glob Biogeochem Cyc 26:GB1004

    Article  Google Scholar 

  • Stukel MR, Ohman MD, Benitez-Nelson CR, Landry MR (2013) Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system. Mar Ecol Prog Ser 491:47–65

    Article  Google Scholar 

  • Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288:260–263

    Article  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J Oceanogr Soc Japan 46:190–194

    Article  Google Scholar 

  • Svensen C, Nejstgaard JC (2003) Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. J Plankton Res 25:917–926

    Article  Google Scholar 

  • Svensen C, Riser CW, Reigstad M, Seuthe L (2012) Degradation of copepod faecal pellets in the upper layer: role of microbial community and Calanus finmarchicus. Mar Ecol Prog Ser 462:39–49

    Article  Google Scholar 

  • Taguchi S, Saino T (1998) Net zooplankton and the biological pump off Sanriku, Japan. J Oceanogr 54:573–582

    Article  Google Scholar 

  • Takahashi K, Kuwata A, Sugisaki H, Uchikawa K, Saito H (2009) Downward carbon transport by diel vertical migration of the copepods Metridia pacifica and Metridia okhotensis in the Oyashio region of the western subarctic Pacific Ocean. Deep-Sea Res I 56:1777–1791

    Article  Google Scholar 

  • Taylor GT (1989) Variability in the vertical flux of microorganisms and biogenic material in the epipelagic zone of a North Pacific central gyre station. Deep-Sea Res 36:1287–1308

    Article  Google Scholar 

  • Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa K, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki S, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300:958–961

    Article  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102

    Article  Google Scholar 

  • Urrére MA, Knauer GA (1981) Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment. J Plankton Res 3:369–387

    Article  Google Scholar 

  • Uye S, Kaname K (1994) Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J Oceanogr 50:43–49

    Article  Google Scholar 

  • Wassmann P, Hansen L, Andreassen IJ, Riser CW, Urban-Rich J (1999) Distribution and sedimentation of faecal pellets on the Nordvestbanken shelf, northern Norway, in 1994. Sarsia 84:239–252

    Article  Google Scholar 

  • Wassmann P, Ypma JE, Tselepides A (2000) Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic Cretan Sea (NE Mediterranean Sea). Prog Oceanogr 46:241–258

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992

    Article  Google Scholar 

  • Wilson S, Steinberg D, Buesseler K (2008) Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep-Sea Res II 55:1636–1647

    Article  Google Scholar 

  • Yamaguchi A, Watanabe I, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T, Takahashi MM (2002) Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res II 49:5513–5529

    Article  Google Scholar 

  • Yoon WD, Kim SK, Han KN (2001) Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar Biol 139:923–928

    Article  Google Scholar 

  • Zhang X, Dam HG (1997) Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep-Sea Res II 44:2191–2202

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. C. B. Miller and S. S. Villamor for English editing and the two anonymous reviewers and a handling editor for valuable comments and suggestions. We thank the captain and crew of the R/V Mirai, and the staff of Marine Works Japan Ltd for their help with sampling in the field and with sample analyses. This study was supported in part by grants from the Japan Society for the Promotion of Science (21710012, 23310020, 25340011) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (SKED: The Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kobari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobari, T., Nakamura, R., Unno, K. et al. Seasonal variability in carbon demand and flux by mesozooplankton communities at subarctic and subtropical sites in the western North Pacific Ocean. J Oceanogr 72, 403–418 (2016). https://doi.org/10.1007/s10872-015-0348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-015-0348-7

Keywords

Navigation