Skip to main content
Log in

Phytoplankton pigment change as a photoadaptive response to light variation caused by tidal cycle in Ariake Bay, Japan

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Underwater light environment and photosynthetic accessory pigments were investigated in Ariake Bay in order to understand how change of the pigments occurs in response to the tidal-induced changes in underwater light conditions. We hypothesize that phytoplankton increases photo-protective pigments and decreases light-harvesting pigments under higher light condition in the mixed layer caused by tidal cycle. Contribution rates of non-phytoplankton particles (a nph (400–700)) for light attenuation coefficient (K d ) was highest (32–85%), and those of phytoplankton particles (a ph (400–700)), dissolved organic matter (a g (400–700)) and water were 6–32, 6–21 and 5–23%, respectively. Mean K d was higher during the spring tide (0.55 ± 0.23 m−1) than the neap tide (0.44 ± 0.16 m−1), and the K d difference was caused by the substances resuspension due to the tidal current. In contrast, ratios of photo-protective pigments (diadinoxanthin and diatoxanthin) per chlorophyll a ((DD+DT)/Chl a) were higher during the neap tide (0.10 ± 0.03 mg mg-Chl a −1) than the spring tide (0.08 ± 0.03 mg mg-Chl a −1). And there was significant positive correlation between (DD+DT)/Chl a and mean relative PAR in the mixed layer (\( \overline {I_{mix} } \)). Moreover, there was significant negative correlation between ratios of light-harvesting pigments (fucoxanthin) per Chl a (Fuco/Chl a) and \( \overline {I_{mix} } \). These results suggested that phytoplankton in Ariake Bay increase photo-protective pigments and decrease light-harvesting pigments in the higher light condition of less turbid, shallower mixed layer during neap tide than spring tide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beak, S. H., S. Shimode, M. S. Han and T. Kikuchi (2008): Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harm. Algae, 7, 729–739.

    Article  Google Scholar 

  • Beer, A., K. Gundermann, J. Beckmann, and C. Büchel (2006): Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: Evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry, 45, 13046–13053.

    Article  Google Scholar 

  • Brunet, C., R. Casotti, B. Aronne and V. Vantrepotte (2003): Measured photophysiological parameters used as tools to estimate vertical water movements in the coastal Mediterranean. J. Plankton Res., 25, 1413–1425.

    Article  Google Scholar 

  • Byun, D. S., X. H. Wang, M. Zavatarelli and Y. K. Cho (2007): Effects of resuspended sediments and vertical mixing on phytoplankton spring bloom dynamics in a tidal estuarine embayment. J. Mar. Syst., 67, 102–118.

    Article  Google Scholar 

  • Christian, D. and Y. P. Sheng (2003): Relative influence of various water quality parameters on light attenuation in Indian River Lagoon. Estuar. Coast. Shelf Sci., 57, 961–971.

    Article  Google Scholar 

  • Cleveland, J. S. and A. D. Weidemann (1993): Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters. Limnol. Oceanogr., 38, 1321–1327.

    Article  Google Scholar 

  • Demers, S., S. Roy, R. Gagnon and C. Vignault (1991): Rapid light-induced changes in cell fluorescence and in xantophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalasiosira pseudonana (Bacillariophyceae): A photo-protection mechanism. Mar. Ecol. Prog. Ser., 76, 185–193.

    Article  Google Scholar 

  • Devaki, B. and A. R. Grossman (1993): Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res., 21, 4458–4466.

    Article  Google Scholar 

  • Diehl, S., S. Berger, R. Ptacnik and A. Wild (2002): Phytoplankton, light, and nutrients in a gradient of mixing depths: Field experiments. Ecology, 83, 399–411.

    Article  Google Scholar 

  • Dimier, C., F. Corato, F. Tramontano and C. Brunet (2007): Photoprotection and xanthophyll-cycle activity in three marine diatoms. J. Phycol., 43, 937–947.

    Article  Google Scholar 

  • Don, N. C., H. Araki, H. Yamanishi, K. Ohgushi, N. T. M. Hang and T. Tokunaga (2007): Sediment transport and short-term sedimentation processes in the tidal flats of the Ariake Sea, West Coast of Kyushu, Japan. J. Coast. Res., 50, 837–841.

    Google Scholar 

  • Falkowski, P. G., R. Greene and Z. Kolber (1994): Light utilization and photoinhibition of photosynthesis in marine phytoplankton. p. 407–432. In Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, ed. by N. R. Baker and J. Bowes, Bios Scientific, Oxford.

    Google Scholar 

  • Fujiki, T., T. Doda, T. Kikuchi and S. Taguchi (2003): Photoprotective response of xanthophyll pigments during phytoplankton blooms in Sagami Bay, Japan. J. Plankton Res., 25, 317–322.

    Article  Google Scholar 

  • Govind, N. S., S. J. Roman, R. Iglesias-Prieto, R. K. Trench, E. L. Triplett and B. B. Prezelin (1990): An analysis of the light-harvesting peridinin-chlorophyll a-proteins from dinoflagellates by immunoblotting techniques. Proc. R. Soc. Lond., 240, 187–195.

    Article  Google Scholar 

  • Hackett, J. D., D. M. Anderson, D. L. Erdner and D. Bhattacharya (2004): Dinoflagellates: A remarkable evolutionary experiment. Am. J. Bot., 91, 1523–1534.

    Article  Google Scholar 

  • Holligan, P. M. (1989): Primary productivity in the shelf seas of north-west Europe. Adv. Bot. Res., 16, 194–252.

    Google Scholar 

  • Holm-Hansen, O. and B. Riemann (1978): Chlorophyll a determination: Improvements in methodology. Oikos, 30, 438–447.

    Article  Google Scholar 

  • Iglesias-Prieto, R. and R. K. Trench (1994): Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar. Ecol. Prog. Ser., 113, 163–175.

    Article  Google Scholar 

  • Inoue, N. (1985): Ariake Bay. p. 838–843. In Coastal Oceanography of Japanese Islands, ed. by Coastal Oceanography Research Committee in the Oceanographical Society of Japan, Tokai Univ. Press (in Japanese).

  • Kawaguchi, O., T. Yamamoto, O. Matsuda and T. Hashimoto (2004): Determination of the limiting nutrients for growth of nori laver and diatoms in Ariake Bay (Japan) by analyses of long-term variation in water quality. Oceanogr. Japan, 13, 173–183 (in Japanese with English abstract).

    Google Scholar 

  • Kishino, M., M. Takahashi, N. Okami and S. Ichimura (1985): Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci., 37, 634–642.

    Google Scholar 

  • Kiyomoto, Y., K. Yamada, H. Nakata, J. Ishizaka, K. Tanaka, K. Okamura, K. Kumagai, T. Umeda and S. Kino (2008): Long-term increasing trend of transparency and its relationships to red tide outbreaks in Ariake Bay. Oceanogr. Japan, 17, 337–356 (in Japanese with English abstract).

    Google Scholar 

  • Kyle, D. J., I. Ohad and C. J. Arntzen (1984): Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc. Acad. Nat. Sci. USA, 81, 4070–4074.

    Article  Google Scholar 

  • Lavaud, J., B. Rousseau, H. J. Gorkom and A. L. Etienne (2002): Influence of the Diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol., 129, 1398–1406.

    Article  Google Scholar 

  • Lavaud, J., B. Rousseau and A. L. Etienne (2004): General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J. Phycol., 40, 130–137.

    Article  Google Scholar 

  • Margalef, R. (1978): Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1, 493–509.

    Google Scholar 

  • Menden-Deuer, S. and E. J. Lessard (2000): Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton. Limnol. Oceanogr., 45, 569–579.

    Article  Google Scholar 

  • Moline, M. A. (1998): Photoadaptive response during the development of a coastal Antarctic diatom bloom and relationship to water column stability. Limnol. Oceanogr., 43, 146–153.

    Article  Google Scholar 

  • Montégut, C. D., G. Madec, A. S. Fischer, A. Lazar and D. Ludicone (2004): Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    Article  Google Scholar 

  • Olaizola, M. and H. Y. Yamamoto (1994): Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J. Phycol., 30, 606–612.

    Article  Google Scholar 

  • Olaizola, M., J. L. Roche, Z. Kolber and P. G. Falkowski (1994): Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynthesis Res., 41, 357–370.

    Article  Google Scholar 

  • Oliver, R. L., J. Whittington, Z. Lorenz and I. T. Webster (2003): The influence of vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its inclusion in a model of phytoplankton photosynthesis. J. Plankton Res., 25, 1107–1129.

    Article  Google Scholar 

  • Ooshima, I. and K. Abe (2005): Estimation method for the attenuation coefficient in the surface layer of the Ariake Sea. Oceanogr. Japan, 14, 593–600 (in Japanese with English abstract).

    Google Scholar 

  • Perry, M. J., M. C. Talbot and R. S. Alberte (1981): Photoadaption in marine phytoplankton: Response of the photosynthetic unit. Mar. Biol., 62, 91–101.

    Article  Google Scholar 

  • Philips, E. J., T. C. Lynch and S. Badylak (1995): Chlorophyll a, tripton, color, and light availability in a shallow tropical inner-shelf lagoon, Florida Bay, FL. Mar. Ecol. Prog. Ser., 127, 223–234.

    Article  Google Scholar 

  • Poll, W. H., R. J. W. Visser and A. G. J. Buma (2007): Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii. Limnol. Oceanogr., 52, 1430–1438.

    Google Scholar 

  • Prieur, L. and S. Sathyendranath (1981): An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol. Oceanogr., 26, 671–689.

    Article  Google Scholar 

  • Sasaki, H., T. Miyamura, S. Saitoh and J. Ishizaka (2005): Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan. Estuar. Coast. Shelf Sci., 64, 447–458.

    Article  Google Scholar 

  • Sherr, E. B. and B. F. Sherr (1993): Preservation and storage of samples for enumeration of heterotrophic protists. p. 207–212. In Handbook of Methods in Aquatic Microbial Ecology, ed. by P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole, Lewis Publishers.

  • Tanaka, K., M. Kodama, K. Kumagai and H. Fujimoto (2004): Variation in in situ fluorescence of phytoplankton pigments and turbidity during winter in the Chikugo River estuary, Ariake Bay, Japan. Oceanogr. Japan, 13, 163–172 (in Japanese with English abstract).

    Google Scholar 

  • Tripathy, S. C., J. Ishizaka, T. Fujiki, T. Shibata, K. Okamura, T. Hosaka and T. Saino (2010): Assessment of carbon- and fluorescence-based primary productivity in Ariake Bay, southwestern of Japan. Estuar. Coast. Shelf Sci., 87, 163–172.

    Article  Google Scholar 

  • Yokoyama, K. (2005): Influence of sediment transport in the Chikugogawa and Shirakawa rivers on the coastal area of Ariake Bay. Ecol. Civil. Eng., 8, 61–72.

    Article  Google Scholar 

  • Zakardjian, B. A., Y. Gratton and A. F. Vezina (2002): Late spring phytoplankton bloom in the lower St. Lawrence estuary: The flushing hypothesis revisited. Mar. Ecol. Prog. Ser., 192, 31–48.

    Article  Google Scholar 

  • Zapata, M., F. Rodriguez and J. L. Garrido (2000): Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser., 195, 29–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, T., Tripathy, S.C. & Ishizaka, J. Phytoplankton pigment change as a photoadaptive response to light variation caused by tidal cycle in Ariake Bay, Japan. J Oceanogr 66, 831–843 (2010). https://doi.org/10.1007/s10872-010-0067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0067-z

Keywords

Navigation