Skip to main content
Log in

First and second baroclinic mode responses of the tropical Indian Ocean to interannual equatorial wind anomalies

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The combined and individual responses of the first and second baroclinic mode dynamics of the tropical Indian Ocean to the well-known Indian Ocean Dipole mode (IOD) wind anomalies are investigated. The IOD forced first baroclinic Rossby waves arrive at the western boundary in three months, while the reflected component from the eastern boundary with opposite phase arrives in five to six months, both carry input energy to the west. The inclusion of the second baroclinic mode slows down the wave propagation by mode coupling and stretches the energy spectrum to a relatively longer time scale. The total energy exists in the equatorial wave guide for at least five months from the forcing, as much as 10% of that of the atmospheric input, which mainly dissipates at the western boundary. The individual responses of the ocean to IOD interannual wind anomaly show that the significant modes of oceanic anomalies are confined to a wave guide of 10° on either side of the equator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashok, K., Z. Guan and T. Yamagata (2001): Impact of the Indian Ocean Dipol on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 4499–4502.

    Article  Google Scholar 

  • Ashok, K., Z. Guan, N. H. Saji and T. Yamagata (2004): Individual and combined influence of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J. Climate, 17, 3141–3155.

    Article  Google Scholar 

  • Behera, S. K., R. Krishnan and T. Yamagata (1999): Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 3001–3004.

    Article  Google Scholar 

  • Gadgil, S., P. N. Vinayachandran, P. A. Francis and S. Gadgil (2004): Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019733.

  • Gill, A. E. (1982): Atmosphere-Ocean and Dynamics. Vol. 30, International Geophysics Series, 662 pp.

  • McCreary, J. P. (1976): Eastern tropical ocean response to changing wind systems: with application to El Niño. J. Phys. Oceanogr., 6, 632–646.

    Article  Google Scholar 

  • Murtugudde, R. and A. J. Busalacchi (1999): Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 12, 2300–2326.

    Article  Google Scholar 

  • Murtugudde, R., A. J. Busalacchi and J. Beauchamp (1998): Seasonal to interannual effects of the Indonesian throughflow on the tropical Indo-Pacific basin. J. Geophys. Res., 103, 21425–21441.

    Article  Google Scholar 

  • Philander, S. G., T. Yamagata and R. C. Pacanowski (1984): Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604–613.

    Article  Google Scholar 

  • Potemra, J. T. (2000): Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106, 2407–2422.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran and T. Yamagata (1999): A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Sprintall, J., A. L. Gordon, R. Murtugudde and R. D. Susanto (2000): A semi-annual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res., 105, 17217–17230.

    Article  Google Scholar 

  • Valsala, K. V. and M. Ikeda (2005): An extreme drought event in the 2002 summer monsoon rainfall and its mechanism proved with a moisture flux analysis. Scientific Online Letters on the Atmosphere, 1, 173–176.

    Google Scholar 

  • Valsala, K. V. and M. Ikeda (2007): Pathways and effects of the Indonesian throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. J. Climate, doi:10.1175/JCLI4167.1.

  • Vinayachandran, P. N., S. Izuka and T. Yamagata (2002): Indian Ocean dipole mode events in an ocean general circulation model. Deep-Sea Res., 49, 1573–1596.

    Google Scholar 

  • White, W. B. (2000): Coupled Rossby waves in the Indian Ocean on interannual timescales. J. Phys. Oceanogr., 30, 2972–2998.

    Article  Google Scholar 

  • White, W. B. and J. L. Annis (2005): Diagnosing heat and vorticity budgets of annual coupled Rossby waves. J. Phys. Oceanogr., 35, 1173–1189.

    Article  Google Scholar 

  • Wijffels, S. and G. Meyers (2004): An intersection of oceanic waveguides: Variability in the Indonesian throughflow region. J. Phys. Oceanogr., 34, 1232–1253.

    Article  Google Scholar 

  • Xie, S. P., H. Annamalai, F. A. Schott and J. P. McCreary (2002): Structure and mechanism of southern Indian Ocean climate variability. J. Climate, 15, 864–878.

    Article  Google Scholar 

  • Yamagata, T., K. Mizuno and Y. Masumoto (1996): Seasonal variations in the equatorial Indian Ocean and their impact on the Lambok throughflow. J. Geophys. Res., 101, 12465–12473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinu Valsala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valsala, V. First and second baroclinic mode responses of the tropical Indian Ocean to interannual equatorial wind anomalies. J Oceanogr 64, 479–494 (2008). https://doi.org/10.1007/s10872-008-0041-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0041-1

Keywords

Navigation