Skip to main content
Log in

Seasonal and interannual variations in the East Sakhalin current revealed by TOPEX/POSEIDON altimeter data

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Seasonal and interannual variations in the East Sakhalin Current (ESC) are investigated using ten-year records of the sea level anomaly (SLA) observed by the TOPEX/POSEIDON (T/P) altimeter. The T/P SLA clearly documents seasonal and interannual variations in the ESC along the east coast of Sakhalin Island, although sea ice masks the region from January to April. Estimates of surface current velocity anomaly derived from T/P SLA are in good agreement with drifting buoy observations. The ESC is strong in winter, with a typical current velocity of 30–40 cm s−1 in December, and almost disappears in summer. Southward flow of the ESC is confined to the shelf and slope region and consists of two velocity cores. These features of the ESC are consistent with short-term observations reported in previous studies. Analysis of the ten-year records of T/P SLA confirms that the structure of the ESC is maintained each winter and the seasonal cycle is repeated every year, although the strength of the ESC shows large interannual variations. Seasonal and interannual variations in the ESC are discussed in relation to wind-driven circulation in the Sea of Okhotsk, using wind stress and wind stress curl fields derived from European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis data and a scatterometer-derived wind product. Seasonal and interannual variations of the anticyclonic eddy in the Kuril Basin are also revealed using T/P SLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AVISO/Altimetry (1998): AVISO User Handbook: Sea Level Anomalies (edition 3.1). AVI-NT-011-312-CN, CLS Space Oceanography Division, Toulouse, France, 24 pp.

  • Bentamy A., Y. Quilfen, F. Gohin, N. Grima, M. Lenaour and J. Servain (1996): Determination and validation of average wind fields from ERS-1 scatterometer measurements. Global Atmos. Ocean Sys., 4, 1–29.

    Google Scholar 

  • Bulatov, N. V., L. A. Kurennaya, L. S. Muktepavel, M. G. Aleksanina and E. E. Gerbek (1999): Eddy water structure in the southern Okhotsk Sea and its seasonal variability (results of satellite monitoring). Oceanology, 39, 29–37.

    Google Scholar 

  • Csanady, G. T. (1978): The arrested topography wave. J. Phys. Oceanogr., 8, 47–62.

    Article  Google Scholar 

  • Ebuchi, N. and K. Hanawa (1995): Comparison of surface current variations observed by TOPEX altimeter with TOLEX-ADCP data. J. Oceanogr., 51, 351–362.

    Article  Google Scholar 

  • Ebuchi, N. and K. Hanawa (1996): Comparison of sea surface heights observed by TOPEX altimeter with sea level data at Chichijima. J. Oceanogr., 52, 259–273.

    Article  Google Scholar 

  • Fukamachi, Y., G. Mizuta, K. I. Ohshima, L. D. Talley, S. C. Riser and M. Wakatsuchi (2004): Transport and modification processes of dense shelf water revealed by long-term moorings off Sakhalin in the Sea of Okhotsk. J. Geophys. Res., 109, C09S10, doi:10/1029/2003JC001906.

  • IFREMER (2002): Mean Wind Field User Manual (version 1.0). C2-MUT-W-05-IF, CERSAT-IFREMER, Plouzane, France, 52 pp.

  • Imawaki, S., H. Uchida, K. Ichikawa and D. Ambe (2003): Estimating the high-resolution mean sea-surface velocity field by combined use of altimeter and drifter data for geoid model improvement. Space Sci. Rev., 108, 195–204.

    Article  Google Scholar 

  • Kitani, K. (1973): An oceanographic study of the Okhotsk Sea: Particularly in regard to cold waters. Bull. Far Sea Fish. Res. Lab., 9, 45–77.

    Google Scholar 

  • Leonov, A. K. (1960): The Sea of Okhotsk. Natl. Tech. Inf. Serv., Springfield, VA, U.S.A.

    Google Scholar 

  • Mizuta, G., Y. Fukamachi, K. I. Ohshima and M. Wakatsuchi (2003): Structure and seasonal variability of the East Sakhalin Current. J. Phys. Oceanogr., 33, 2430–2445.

    Article  Google Scholar 

  • Moroshkin, K. V. (1966): Water masses of the Sea of Okhotsk. Joint Pub. Res. Serv. 43942, U.S. Dept. of Comm., Washington, D.C., 98 pp.

    Google Scholar 

  • Nakamura, T. and T. Awaji (2004): Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: A three-dimensional nonhydrostatic model experiment. J. Geophys. Res., 109, C09S07, doi:10.1029/2003JC001850.

  • Ohshima, K. I., M. Wakatsuchi, Y. Fukamachi and G. Mizuta (2002): Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J. Geophys. Res., 107, 3195, doi: 10.1029/2001JC001005.

    Article  Google Scholar 

  • Ohshima, K. I., D. Simizu, M. Itoh, G. Mizuta, Y. Fukamachi, S. C. Riser and M. Wakatsuchi (2004): Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J. Phys. Oceanogr., 34, 513–525.

    Article  Google Scholar 

  • Ohshima, K. I., Y. Fukamachi, T. Mutoh and M. Wakatsuchi (2005): A generation mechanism for mesoscale eddies in the Kuril Basin of the Okhotsk Sea: Baroclinic instability caused by enhanced tidal mixing. J. Oceanogr., 61, 247–260.

    Google Scholar 

  • Parkinson, C. L. and A. J. Gratz (1983): On the seasonal sea ice cover of the Sea of Okhotsk. J. Geophys. Res., 88, 2793–2802.

    Google Scholar 

  • Schlax, M. G. and D. B. Chelton (1994): Aliased tidal errors in TOPEX/POSEIDON sea surface height data. J. Geophys. Res., 99, 24,761–24,776.

    Google Scholar 

  • Simizu, D. and K. I. Ohshima (2002): Barotropic response of the Sea of Okhotsk to wind forcing. J. Oceanogr., 58, 851–860.

    Article  Google Scholar 

  • Simizu, D. and K. I. Ohshima (2006): A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J. Geophys. Res., doi:10.1029/2005JC002980 (in press).

  • Smith, S. D. (1988): Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15,467–15,472.

    Google Scholar 

  • Talley, L. D. (1991): Okhotsk Sea water anomaly: Implications for ventilation in the North Pacific. Deep-Sea Res., 38, Suppl. 1, 171–190.

    Google Scholar 

  • Talley, L. D. and Y. Nagata (1995): The Okhotsk Sea and Oyashio Region. PICES Sci. Rep., PICES, Sydney, B.C., Canada, 2, 227 pp.

    Google Scholar 

  • Uchida, H. and S. Imawaki (2003): Eulerian mean surface velocity field derived by combining drifter and satellite altimeter data. Geophys. Res. Lett., 30, 1229, doi:10.1029/2002GL016445.

    Google Scholar 

  • Uchimoto, K., H. Mitsudera, N. Ebuchi and Y. Miyazawa (2006): Clockwise eddy caused by the Soya Warm Current in an OGCM. J. Oceanogr. (submitted).

  • Wakatsuchi, M. and S. Martin (1990): Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography. J. Geophys. Res., 95, 13,393–13,410.

    Google Scholar 

  • Wakatsuchi, M. and S. Martin (1991): Water circulation of the Kuril Basin of the Okhotsk Sea and its relation to eddy formation. J. Oceanogr. Soc. Japan, 47, 152–168.

    Article  Google Scholar 

  • Watanabe, K. (1963): On the reinforcement of the East Sakhalin Current preceding to the sea ice season off the coast of Hokkaido—Study on the sea ice in the Okhotsk Sea (IV). Ocenogr. Mag., 14, 117–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebuchi, N. Seasonal and interannual variations in the East Sakhalin current revealed by TOPEX/POSEIDON altimeter data. J Oceanogr 62, 171–183 (2006). https://doi.org/10.1007/s10872-006-0042-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0042-x

Keywords

Navigation