Skip to main content
Log in

Anhydrides of Arylfuran and Arylpyran Pseudoacids: Formation and Structures; C–O Bond Lengths Trends in Pseudo o-Formylbenzoic Acid Derivatives

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Three methods for producing anhydrides of arylfuran and arylpyran pseudoacids were explored. These included thermal dehydration, phosgene or thionly chloride activation and decomposition, and dicyclohexylcarbodiimide activation and coupling. Derivatives of the cyclic forms of o-formylbenzoic acid, o-acetylbenzoic acid, 2-carboxyphenylacetaldehyde and of 4,4-dimethyl-3,4-dihydro-3-hydroxy-[1H]-isobenzopyran-1-one were formed including dipseudoanhydides and normal-pseudo anhydrides. Crystal and molecular structures for meso and (R,R/S,S)-bis(1[3H]-isobenzofuranone-3-yl)ether, (R,R/S,S)-bis(3-methyl-1[3H]-isobenzofuranone-3yl)ether, meso (3,4-dihydro-[1H]-isobenzopyran-1-one-3-yl)ether, 3-benzoyloxy-1[3H]-isobenzofuranone, 3-benzoyloxy-3-methyl-1[3H]isobenzofuranone, 3-(4′-nitrobenzoyloxy)-4,4-dimethyl-3,4-dihydro-[1H]-isobenzopyran-1-one, and (1[3H]-isobenzofuranone-3-yl)(4,4,dimethyl-3,4-dihydro-[1H]-isobenzopyran-1-one-3-yl)ether are reported. Endocyclic pseudoacyl C–O bonds are always longer than the exocyclic pseudoacyl C–O bonds. It is possible to refine the previously established C–O bond length dependencies on the pKa (of the conjugate acids) of the leaving groups for 3-substituted 1-[3H]-isobenzofuranones. Of six dipseudoanhydrides studied, conformations are found with exocyclic C–O(ether) linkages synclinal to the endocyclic C–O and away from the ring (exo conformation) in two meso structures, two of three RR/SS forms and in a chiral unsymmetrical form. An endo conformation is observed in one of the RR/SS forms. In three normal-pseudo anhydrides, both endo and exo conformations are observed.

Graphic Abstract

Synthetic methods for formation of anhydrides of several arylfuran and arylpyran pseudoacids are described, and the pseudoacyl C–O bond length trends are determined for leaving groups spanning over 30 pKa units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Scheme 3
Fig. 10
Fig. 11
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

References

  1. Mowry DT (1950) Mucochloric acid. I. Reactions of the pseudo acid group. J Am Chem Soc 72:2535–2537

    Article  CAS  Google Scholar 

  2. Valente EJ, Martin SB, Sullivan LD (1998) Pseudoacids. II.: 2-Acylbenzoic acid derivatives. Acta Crystallogr A B54:264–276

    Article  CAS  Google Scholar 

  3. Valters RE, Flitsch W (1985) In: Katritzy AR (ed) Ring-chain tautomerism. Plenum Press, New York

    Chapter  Google Scholar 

  4. Jones PR (1963) Ring-chain tautomerism. Chem Rev 63(5):461–487

    Article  Google Scholar 

  5. Wolf L (1885) Zur Kenntniss der Terpene und der ätherischen Oele. Annalen 229:258

    Google Scholar 

  6. Bredt J (1886) Über Acetyllävulinsäure und die Constitution der γ-Ketonsäuren. Annalen 236:225–240

    Article  Google Scholar 

  7. Supinski M, Valente EJ (2016) Mucochloric pseudoanhydrides. J Chem Crystallogr 46:263–268

    Article  CAS  Google Scholar 

  8. Weinges K, Hepp M, Huber-Patz U, Irngartinger H (1987) Chemie der Ginkgolide, III. Bilobalid/iso-Bilobalid – Strukturbeweis durch Röntgenbeugung. Liebigs Ann Chem 12:1079–1085

    Article  Google Scholar 

  9. Lalancette RA, Vanderhof PA, Thompson MW (1990) 2-Benzoylbenzoic acid: structures and hydrogen-bonding patterns of the anhydrous and hydrated form. Acta Crystallogr A C46:1682–1686

    CAS  Google Scholar 

  10. Bhatt MV, Kamath KM, Ravindranathan M (1971) Aspects of tautomerism. Part II. Reactions of the pseudo-acid chloride of o-benzoylbenzoic acid with nucleophiles. J Chem Soc C. https://doi.org/10.1039/J39710001772

    Article  Google Scholar 

  11. Demaison J, Csaszar AG (2012) Equilibrium CO bond lengths. J Mol Struct 1023:7–14

    Article  CAS  Google Scholar 

  12. Briggs AJ, Glenn R, Jones PG, Kirby AJ, Ramaswamy P (1984) Bond length and reactivity. Stereoelectronic effects on bonding in acetals and glucosides. J Am Chem Soc 106:6200–6206

    Article  CAS  Google Scholar 

  13. Jones PG, Kirby AJ (1984) Simple correlation between bond length and reactivity. Combined use of crystallographic and kinetic data to explore a reaction coordinate. J Am Chem Soc 106:6207–6212

    Article  CAS  Google Scholar 

  14. Ruggiero G, Thaggard AL, Valente EJ, Eggleston DS (1990) Structural variations in 3,4-dihydro-2H-pyran ketals: acyl and aryl warfarin derivatives. Acta Crystallogr A B46:629–637

    Article  CAS  Google Scholar 

  15. Cooper WJ, Smith TN, Barker AK, Webb JA, Valente EJ (2003) Pseudoacids. III. Formation and structures of new cyclic oxocarboxylic acids. J Chem Crystallogr 33(5–6):375–382

    Article  CAS  Google Scholar 

  16. Schöpf C, Kühn R (1950) Notiz über 2-Oxy-hydrindon-(1). Chem Ber 83:390–394

    Article  Google Scholar 

  17. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  CAS  Google Scholar 

  18. Li W, Yin H, Wen L, Li K, Fan W (2009) 3,3′-Oxybi[isobenzo-furan-1(3H)-one]. Acta Crystallogr E 65:o2577

    Article  CAS  Google Scholar 

  19. Letort DT (2000) Synthetic methods towards pseudoacid derivatives. Honors Essay, Mississippi College, Clinton

    Google Scholar 

  20. Valente EJ, Fuller JF, Ball JD (1998) Pseudoacids I: 4- and 5-oxoacids. Acta Crystallogr A B54:162–173

    Article  CAS  Google Scholar 

  21. Bürgi H-B, Dunitz JD (1994) Structure correlations, vol 2. VCH Publishers, Weinheim

    Book  Google Scholar 

  22. Bürgi H-B, Dunitz JD, Lehn JM, Wipff G (1974) Stereochemistry of reaction paths at carbonyl centers. Tetrahedron 30(12):1563–1572

    Article  Google Scholar 

Download references

Acknowledgements

We thank Marilyn Brooks, Brian MacFarland, Derek Thomas Letort for early synthetic explorations. EJV thanks the National Science Foundation for support of crystallographic equipment (MRI-0604188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Valente.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Loughlin, E., Valente, E.J. Anhydrides of Arylfuran and Arylpyran Pseudoacids: Formation and Structures; C–O Bond Lengths Trends in Pseudo o-Formylbenzoic Acid Derivatives. J Chem Crystallogr 49, 193–205 (2019). https://doi.org/10.1007/s10870-019-00798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00798-1

Keywords

Navigation