Skip to main content
Log in

Synthesis, Characterization, and Crystal Structure of (2E)-3-(4-Fluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The title chalcone, of formula C15H11F1O2, crystallized in the orthorhombic space group P212121 (# 19) with crystal parameters a = 6.9998(8) Å, b = 12.6740(15) Å, c = 12.8997(15) Å, V = 1144.4(2) Å3, Z = 4, determined at 100 K with MoKα radiation. The solid-state structure displays an intramolecular S(6) hydrogen bond and the crystal architecture is maintained by intermolecular F⋯H, O⋯H, and C⋯C short contacts. A DFT geometry optimization is compared with the experimental structure. As 19F NMR spectroscopy can be used for metabolic tagging of biologically active compounds (including chalcones), the solution-state 19F chemical shift and 13C19F coupling constants (nJ) are also reported.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Batovska DI, Todorova IT (2010) Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 5(1):1–29

    Article  CAS  PubMed  Google Scholar 

  2. Wurtz A (1872) Ueber einen Aldehyd-Alkohol. J für Praktische Chemie 5(1):457–464. https://doi.org/10.1002/prac.18720050148

    Article  Google Scholar 

  3. Dias TA, Duarte CL, Lima CF, Proença MF, Pereira-Wilson C (2013) Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. Eur J Med Chem 65(0):500–510. https://doi.org/10.1016/j.ejmech.2013.04.064

    Article  CAS  PubMed  Google Scholar 

  4. Peng W, Jiabin Y, Jin CAI, Chunlong SUN, Lushen LI, Min JI (2013) An efficient and facile synthesis of flavanones catalyzed by N-methylimidazole. J Serb Chem Soc 78(7):917–920. https://doi.org/10.2298/JSC120629157W

    Article  CAS  Google Scholar 

  5. Slabber CA (2014) The war against pain: the design, synthesis, and testing of potential COX-2 selective inhibitors. University of KwaZulu-Natal, Pietermaritzburg

    Google Scholar 

  6. Synthetic biology (2013) Forcing fluorine into molecules. Nature 501(7466):139–139. https://doi.org/10.1038/501139b

    Article  CAS  Google Scholar 

  7. Hunter L (2010) The C–F bond as a conformational tool in organic and biological chemistry. Beilstein J Org Chem 6:38. https://doi.org/10.3762/bjoc.6.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1(5):777–791. https://doi.org/10.4155/fmc.09.65

    Article  CAS  PubMed  Google Scholar 

  9. Merck E Handbook of instrumental analysis: NMR spectroscopy. E. Merck, Darmstadt

  10. Paratone-Parabar. http://hamptonresearch.com/product_detail.aspx?sid=138&pid=404. Accessed 04 Feb 2015

  11. MiTeGen. http://www.mitegen.com/. Accessed 04 Feb 2015

  12. Incoatec Microfocus Source. http://www.incoatec.de/products/incoatec-microfocus-source-ius/. Accessed 04 Feb 2015

  13. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  14. Sheldrick G (2008) A short history of SHELX. Acta Crystallographica Section A 64(1):112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  15. SADABS (2001) Bruker AXS Inc, Madison, Wisconsin, USA

  16. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39(3):453–457. https://doi.org/10.1107/S002188980600731X doi

    Article  CAS  Google Scholar 

  17. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41(2):466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  18. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467. https://doi.org/10.1002/jcc.540110405

    Article  CAS  Google Scholar 

  19. Schrodinger M (2015) Materials science suite. Schrodinger LLC, New York

    Google Scholar 

  20. Schrodinger (2010) The PyMOL molecular graphics system, Version 1.3r1

  21. Cason C, Frolich T, Lipka C POV-Ray—the persistence of vision Raytracer. 3.7.0 edn

  22. Flack HD, Bernardinelli G (2008) The use of X-ray crystallography to determine absolute configuration. Chirality 20(5):681–690. https://doi.org/10.1002/chir.20473

    Article  CAS  PubMed  Google Scholar 

  23. SciFinder (2018) A CAS scientific information solution CAS. https://scifinder.cas.org/. Accessed 26 Jun 2018

  24. Ding Y, Yang G-F (2001) Syntheses and fungicidal activity of flavanone derivatives with substitution in B ring. Yingyong Huaxue 18(10):785–789

    CAS  Google Scholar 

  25. Sakirolla R, Tadiparthi K, Yaeghoobi M, Abd Rahman N (2018) Di-cationic Ionic liquid catalyzed synthesis of 1,5-benzothiazepines. Asian J Chem 30(1):107–115. https://doi.org/10.14233/ajchem.2018.20920

    Article  CAS  Google Scholar 

  26. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed 34(15):1555–1573. https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  27. Bernstein J, Shimoni L, Davis RE, Chang N-L (1995) Muster aus H-Brücken: ihre Funktionalität und ihre graphentheoretische analyse in kristallen. Angew Chem 107(15):1689–1708. https://doi.org/10.1002/ange.19951071505

    Article  Google Scholar 

  28. Marais JPJ, Deavours B, Dixon RA, Ferreira D (2006) The stereochemistry of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer New York, pp 1–46

    Google Scholar 

  29. Bible RH (1965) Interpretation of NMR spectra: an empirical approach. Plenum Press, New York

    Book  Google Scholar 

  30. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  31. David F (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17(13):1571–1586

    Article  Google Scholar 

  32. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  33. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108(2):664–675. https://doi.org/10.1063/1.475428

    Article  CAS  Google Scholar 

  34. Official Gaussian Website. http://www.gaussian.com/. Accessed 26 Apr 2015

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Rev. C.01

  36. Mohr PJ, Newell DB, Taylor BN (2016) CODATA recommended values of the fundamental physical constants: 2014. Rev Mod Phys 88:035009–035073. https://doi.org/10.1103/RevModPhys.88.035009

    Article  Google Scholar 

  37. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon–fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105(10):3206–3214. https://doi.org/10.1021/ja00348a041

    Article  CAS  Google Scholar 

  38. Thalladi VR, Weiss H-C, Bläser D, Boese R, Nangia A, Desiraju GR (1998) C–H⋯F interactions in the crystal structures of some fluorobenzenes. J Am Chem Soc 120(34):8702–8710. https://doi.org/10.1021/ja981198e

    Article  CAS  Google Scholar 

  39. Rybalova TV, Bagryanskaya IY (2009) C–F⋯p. F⋯H, and F⋯F intermolecular interactions and F-aggregation: role in crystal engineering of fluoroorganic compounds. J Struct Chem 50(4):741–753

    Article  CAS  Google Scholar 

  40. Rowland RS, Taylor R (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals Radii. J Phys Chem 100 (18):7384–7391. https://doi.org/10.1021/jp953141&%23x002B;

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the University of KwaZulu-Natal (Pietermaritzburg) and the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross S. Robinson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10870_2018_732_MOESM1_ESM.pdf

Supplementary material 1. Supplementary information in the form of crystallographic data (CCDC 1048845) may be obtained via the web at the URL http://www.ccdc.cam.ac.uk/, via email from data_request@ccdc.cam, or by contacting the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB21FZ, United Kindgom. (PDF 1841 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slabber, C.A., Grimmer, C.D., Munro, O.Q. et al. Synthesis, Characterization, and Crystal Structure of (2E)-3-(4-Fluorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one. J Chem Crystallogr 48, 213–219 (2018). https://doi.org/10.1007/s10870-018-0732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0732-4

Keywords

Navigation