Skip to main content
Log in

Experimental Electron Density of Ammonium Dihydrogen Phosphate in the Paraelectric as well as Antiferroelectric Phases by the Maximum Entropy Method

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The experimental electron density of ammonium dihydrogen phosphate (ADP) crystal in the paraelectric phase (155 K) as well as antiferroelectric phase (100 K) is obtained from its high resolution X-ray diffraction data using the maximum entropy method. Marked redistribution of electron density has been observed in ADP crystals as the crystal temperature is lowered below the phase transition temperature Tc = 148 K. The nature of very strong O–H–O hydrogen bonds between phosphate anions changes from an ideal covalent interaction to a polar covalent interaction as the temperature is altered from 155 to 100 K. The influence of intermolecular interaction like the dipolar interaction on the electron density particularly in the intermolecular region is clearly visible in the electron density maps. One of the most striking features of the electron density of ADP is the presence of non nuclear maxima (NNM) within the “ab” planes. It is argued that the appearance of these NNMs is a normal consequence of the chemical bonding between homonuclear groups in ADP.

Graphical Abstract

The manuscript describes the experimental electron density of ammonium dihydrogen phosphate (ADP) obtained from its high resolution X-ray diffraction data recorded at two crystal temperatures namely 100 and 155 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tokunaga M, Matsubara T (1966) Prog. Theo. Phys. 35:581

    Article  CAS  Google Scholar 

  2. Nagamiya T (1952) Prog. Theo. Phys. 7:275

    Article  CAS  Google Scholar 

  3. Koval S, Lasave J, Migoni RL, Kohanoff J, Dalal NS (2011) In: Mickaël Lallart (ed) Ab Initio Studies of H-Bonded Systems: The Cases of Ferroelectric KH2PO4 and Antiferroelectric NH4H2PO4, Ferroelectrics—Characterization and Modeling, InTech, ISBN: 978-953-307-455-9

  4. Tenzer L, Frazer BC, Pepinsky R (1958) Acta Cryst. B11:505

    Article  Google Scholar 

  5. Fukami T, Akahoshi S, Hukuda K, Yagi T (1987) J Phys Soc Jpn 56:2223

    Article  CAS  Google Scholar 

  6. Koritsanszky TS, Coppens P (2001) Chem Rev 101:1583

    Article  CAS  Google Scholar 

  7. Gatti C, Bianchi R, Destro R, Merati F (1992) J. Mol. Struct. (Theochem) 255:409

    Article  Google Scholar 

  8. Volkov A, Abramov Y, Coppens P, Gatti C (2002) Acta Cryst A56:332

    Google Scholar 

  9. Netzel J, Smaalen SV (2009) Acta Cryst B65:624

    Article  Google Scholar 

  10. Roversi P, Destro R (2004) Chem Phys Lett 386:472

    Article  CAS  Google Scholar 

  11. Roversi P, Irwin JJ, Bricogne G (1998) Acta Cryst A54:971

    Article  CAS  Google Scholar 

  12. Smaalen SV, Netzel J (2009) Phys Scr 79:1

    Google Scholar 

  13. de Vries RY, Briels WJ, Feil D (1996) Phys Rev Lett 77:1719

    Article  Google Scholar 

  14. Peres N, Boukhris A, Souhassou M, Gavoille G, Lecomte C (1999) Acta Cryst A55:1038

    Article  CAS  Google Scholar 

  15. Smaalen SV, Palatinus L, Schneider M (2003) Acta Cryst. A59:459

    Article  Google Scholar 

  16. Petricek V, Dusek M, Palatinus L (2006) JANA2000 Institute of Physics. Praha, Czech Republic

    Google Scholar 

  17. Netzel J, Hofmann A, Smaalen SV (2008) Cryst Eng Commun 10:335

    Article  CAS  Google Scholar 

  18. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  19. Lasave J, Koval S, Dalal NS, Migoni RL (2007) Phys Rev Lett 98:267601

    Article  CAS  Google Scholar 

  20. Popelier PLA (2000) Atoms in molecules: an introduction. Pearson Education Ltd, Harlow UK

    Google Scholar 

  21. Choudhury RR, Chitra R, Capet F, Roussel P (2011) J of Molecular Structure 994:44

    Article  CAS  Google Scholar 

  22. Iversen BB, Jensen JL, Danielsen J (1997) Acta Crystallogr. Sect. A53:376

    Article  CAS  Google Scholar 

  23. Pendas AM, Blanco MA, Costales A, Sanchez PM, Luana V (1999) Phys Rev Lett 83:1930

    Article  CAS  Google Scholar 

  24. Luana V, Mori-Sanchez P, Costales A, Blanca MA, Pendas A (2003) J Chem. Physics 119:6341

    Article  CAS  Google Scholar 

  25. Platts JA, Overgaard J, Jones C, Iversen BB, Stasch A (2011) J Phys Chem A 115:194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajul Ranjan Choudhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, R.R., Chitra, R., Capet, F. et al. Experimental Electron Density of Ammonium Dihydrogen Phosphate in the Paraelectric as well as Antiferroelectric Phases by the Maximum Entropy Method. J Chem Crystallogr 44, 586–596 (2014). https://doi.org/10.1007/s10870-014-0553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0553-z

Keywords

Navigation