Skip to main content
Log in

Structural and Putative Functional Role of Conserved Water Molecular Cluster in the X-ray Structures of Plant Thiol Proteases: A Molecular Dynamics Simulation Study

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Cysteine proteases are involved in the osteoporosis, arthritis, cancer metastasis and protein degrading related diseases. Role of water molecules in the catalytic mechanism of cysteine proteases are uniquely important. So for searching the detail role of H-bonded water cluster in plant thiol proteases, we have analyzed 21 X-ray and solvated structures and performed 10 ns MD-simulation of their apo and ligand bound forms. Molecular dynamics simulation study was employed at 300 K by NAMD program. The results have shown the presence of a conserved water molecular cluster containing six hydrophilic centers (W1–W6). During the simulation, water molecular network adopts two types of H-bonding patterns in the enzyme. Some of the conserved water molecules of the cluster (Type-I and II) interact with the residues of S2 and S3 subsites and may stabilize the active center of the plant cysteine proteases. Detail analysis of ASA, interaction energy and torsion angles of the subsite residues have indicated the possibility of involvement of this water cluster to ligand binding process of the enzyme. However, the simulation results indicate the occupancy of Type-I topology (of the H-bonding network/cluster of water molecules) is higher than Type-II in the ligand bound form.

Graphical Abstract

The six conserved H-bonded water molecules are interact to S2 and S3 subsites and may influence the ligand binding process of Plant Thiol Proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Otto HH, Schirmeister T (1997) Chem Rev 97:133

    Article  CAS  Google Scholar 

  2. Amamoto T, Okazaki T, Komurasaki T, Hanada K, Omura S (1984) Microbiol Immunol 28:85

    CAS  Google Scholar 

  3. Amamoto T, Okazaki T, Komurasaki T, Oguma K, Tamai M, Hanada K, Omura S (1984) Jpn J Pharmacol 34:335

    Article  CAS  Google Scholar 

  4. Lecaille F, Kaleta J, Bromme D (2002) Chem Rev 102:4459

    Article  CAS  Google Scholar 

  5. Huet G, Flip RM, Richet C, Thiebet C, Demeyer D, Balduyck M, Duquesnoy B, Degand P (1992) Clin Chem 38:1694

    CAS  Google Scholar 

  6. Sloane BF, Moin K, Krepela E, Rozhin J (1990) Cancer Metastasis Rev 9:333

    Article  CAS  Google Scholar 

  7. Khanna-Chopra R, Srivalli B, Ahlawat YS (1999) Biochem Biophys Res Commun 255:324

    Article  CAS  Google Scholar 

  8. van der Hoorn RA, Jones JD (2004) Curr Opin Plant Biol 7:400

    Article  Google Scholar 

  9. Chapman HA, Stone OL, Vavrin Z (1984) J Clin Investig 73:806

    Article  CAS  Google Scholar 

  10. Vernet T, Tessier DC, Chatellier J, Plouffe C, Lee TS, Thomas DY, Storer AC, Menard R (1995) J Biol Chem 270:16645

    Article  CAS  Google Scholar 

  11. Harrison MJ, Burton NA, Hillier IH (1997) J Am Chem Soc 119:12285

    Article  CAS  Google Scholar 

  12. Menard R, Khouri HE, Plouffe C, Laflamme P, Durpras R, Vernet T, Tessier DC, Thomas DY, Storer AC (1991) Biochemistry 30:5531

    Article  CAS  Google Scholar 

  13. Wang J, Xiang YF, Lim C (1994) Protein Eng Des Sel 7:75

    Article  CAS  Google Scholar 

  14. Nandi TK, Bairagya HR, Mukhopadhyay BP, Mallik P, Sukul D, Bera AK (2011) J Mol Model. doi:10.1007/s00894-011-1277-z

    Google Scholar 

  15. Gul S, Hussain S, Thomas MP, Resmini M, Verma CS, Thomas EW, Brocklehurst K (2008) Biochemistry 47:2025

    Article  CAS  Google Scholar 

  16. Bhattacharya S, Ghosh S, Chakraborty S, Bera AK, Mukhopadhayay BP, Dey I, Banerjee A (2001) BMC Struct Biol 1:4

    Article  CAS  Google Scholar 

  17. Nandi TK, Bairagya HR, Mukhopadhyay BP, Sekar K, Sukul D, Bera AK (2009) J Biosci 34:27

    Article  CAS  Google Scholar 

  18. Sreenivasan U, Axelsen PH (1992) Biochemistry 31:12785

    Article  CAS  Google Scholar 

  19. Krem MM, Enrico DC (1998) Proteins 30:34

    Article  CAS  Google Scholar 

  20. Loris R, Langhorst U, De Vos S, Decanniere K, Bouckaert J, Maes D, Transue TR, Steyaert J (1999) Proteins 36:117

    Article  CAS  Google Scholar 

  21. Ogata K, Wodak SJ (2002) Protein Eng Des Sel 15:697

    Article  CAS  Google Scholar 

  22. Kanaujia SP, Sekar K (2009) Acta Crystallogr D 65:74

    Article  Google Scholar 

  23. Meyer E (1992) Protein Sci 1:1543

    Article  CAS  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilli G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  25. Pickersgill RW, Harris GW, Garman E (1992) Acta Crystallogr Sect B 48:59

    Article  Google Scholar 

  26. Kamphuis IG, Kalk KH, Swarte MB, Drenth J (1984) J Mol Biol 179:233

    Article  CAS  Google Scholar 

  27. Yamamoto D, Matsumoto K, Ohishi H, Ishida T, Inoue M, Kitamura K, Mizuno H (1991) J Biol Chem 266:14771

    CAS  Google Scholar 

  28. Kim MJ, Yamamoto D, Matsumoto K, Inoue M, Ishida T, Mizuno H, Sumiya S, Kitamura K (1992) Biochem J 287:797

    CAS  Google Scholar 

  29. Janowski R, Kozak M, Jankowska E, Grzonka Z, Jaskolski M (2004) J Pept Res 64:141

    Article  CAS  Google Scholar 

  30. LaLonde JM, Zhao B, Smith WW, Janson CA, DesJarlais RL, Tomaszek TA, Carr TJ, Thompson SK, Oh HJ, Yamashita DS, Veber DF, Abdel-Meguid SS (1998) J Med Chem 41:4567

    Article  CAS  Google Scholar 

  31. Schroder E, Phillips C, Garman E, Harlos K, Crawford C (1993) FEBS 315:38

    Article  CAS  Google Scholar 

  32. Alphey MS, Hunter WN (2006) Acta Crystallogr F 62:504

    Article  Google Scholar 

  33. Redzynia I, Ljunggren A, Bujacz A, Abrahamson M, Jaskolski M, Bujacz G (2009) FEBS J 276:793

    Article  CAS  Google Scholar 

  34. Pickersgill RW, Rizkallah P, Harris GW, Goodenough PW (1991) Acta Crystallogr B 47:766

    Article  Google Scholar 

  35. Katerelos NA, Taylor MA, Scott M, Goodenough PW, Pickersgill RW (1996) FEBS Lett 392:35

    Article  CAS  Google Scholar 

  36. Maes D, Bouckaert J, Poortmans F, Wyns L, Looze Y (1996) Biochemistry 35:16292

    Article  CAS  Google Scholar 

  37. O’Hara BP, Hemmings AM, Buttle DJ, Pearl LH (1995) Biochemistry 34:13190

    Article  Google Scholar 

  38. Varughese KI, Su Y, Cromwell D, Hasnain S, Xuong NH (1992) Biochemistry 31:5172

    Article  CAS  Google Scholar 

  39. Baker EN, Dodson EJ (1980) Acta Crystallogr A 36:559

    Article  Google Scholar 

  40. Choi KH, Laursen RA, Allen KN (1999) Biochemistry 38:11624

    Article  CAS  Google Scholar 

  41. Biswas S, Chakrabarti C, Kundu S, Jagannadham MV, Dattagupta JK (2003) Proteins 51:489

    Article  CAS  Google Scholar 

  42. Thakurta PG, Biswas S, Chakrabarti C, Sundd M, Jagannadham MV, Dattagupta JK (2004) Biochemistry 43:1532

    Article  CAS  Google Scholar 

  43. Ghosh R, Dattagupta JK, Biswas S (2007) Biochem Biophys Res Commun 362:965

    Article  CAS  Google Scholar 

  44. Guex N, Diem A, Peitsch MC (1997) Electrophoresis 18:2714

    Article  CAS  Google Scholar 

  45. Guex N, Diem A, Peitsch MC, Schwede T (2001) The deep view-the Swiss-PdbView program, an environment for comparative protein modeling. GlaxoSmithKline R&D, London

    Google Scholar 

  46. Mustata G, Briggs JM (2004) Protein Eng Des Sel 17:223

    Article  CAS  Google Scholar 

  47. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

  48. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) J Comput Chem. doi:10.1002/jcc.21816

    Google Scholar 

  49. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605

    Article  CAS  Google Scholar 

  50. Nelson M, Humphrey W, Gursoy A, Dalke A, Kale L, Skeel RD, Schulten K (1996) Int J Supercomput Appl High Perform Comput 10:251

    Article  Google Scholar 

  51. Phillips JC, Braun R, Wang W, Gumbart J, Emad Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781

    Article  CAS  Google Scholar 

  52. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187

    Article  CAS  Google Scholar 

  53. Vriend G (1990) J Mol Graph 8:52

    Article  CAS  Google Scholar 

  54. Schechter I, Berger A (1967) Biochem Biophys Res Commun 27:157

    Article  CAS  Google Scholar 

  55. Berger A, Schechter I (1970) Phil Trans R Soc Lond B 257:249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandi, T.K., Bairagya, H.R., Mishra, D.K. et al. Structural and Putative Functional Role of Conserved Water Molecular Cluster in the X-ray Structures of Plant Thiol Proteases: A Molecular Dynamics Simulation Study. J Chem Crystallogr 42, 1105–1118 (2012). https://doi.org/10.1007/s10870-012-0364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0364-z

Keywords

Navigation