Skip to main content
Log in

A New Coordination Polymer of Zn(II)-btc (H3btc = Benzene-1,3,5-tricarboxylic acid) with Protonated Acridine: Synthesis, Crystal Structure and Spectroscopic Properties

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A new Zn(II)-btc coordination polymer 1 (H3btc = benzene-1,3,5-tricarboxylic acid) containing protonated acridines was synthesized by hydrothermal reaction at 165 °C for 3 days and characterized by FT-IR, UV–Vis, Fluorescence, TGA measurements and single-crystal/powder X-ray crystallography. The crystallographic data for 1: monoclinic, P21/n, a = 11.0100(5), b = 16.7104(7), c = 11.7492(5) Å, β = 98.735(2), V = 2136.56(16) Å3, Z = 4, T = 130(2) K, Dc = 1.572 g cm−3, F(000) = 1036, μ(Mo Kα) = 1.205 mm−1, GOF = 1.005. R 1 = 0.0427, wR 2 = 0.1410 [I > 2σ(I)]. Structural analysis also revealed that the btc3− ligands bridge four-coordinate Zn(II) centres to form a 2-D grid-like layer network on the bc plane. The protonated acridines fill up the cavities formed between adjacent layers and combine the 2-D layers to generate a non-interpenetrating 3-D supramolecular framework through the hydrogen bondings and π···π packing interactions. The fluorescence investigation disclosed that 1 shows multiband emissions over a wide range.

Graphical Abstract

A non-interpenetrating 3-D supramolecular framework, built from Zn(II) ions and benzene-1,3,5-tricarboxylate ligands, encapsulates the protonated acridines and exhibits multiband fluorescence emissions over a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dang DB, Wu PY, He C, Xie Z, Duan CY (2010) J Am Chem Soc 132:14321–14323

    Article  CAS  Google Scholar 

  2. Li PZ, Lu XM, Liu B, Wang S, Wang XJ (2007) Inorg Chem 46:5823–5825

    Article  CAS  Google Scholar 

  3. Sava DF, Kravtsov VC, Nouar F, Wojtas L, Eubank JF, Eddaoudi M (2008) J Am Chem Soc 130:3768–3770

    Article  CAS  Google Scholar 

  4. Lei BF, Li B, Zhang HR, Zhang LM, Li WL (2007) J Phys Chem C 111:11291–11301

    Article  CAS  Google Scholar 

  5. Chen SM, Zhang J, Wu T, Feng PY, Bu XH (2009) J Am Chem Soc 131:16027–19029

    Article  CAS  Google Scholar 

  6. Ma S, Zhou HC (2006) J Am Chem Soc 128:11734–11735

    Article  CAS  Google Scholar 

  7. Oisaki K, Li QW, Furukawa H, Czaja AU, Yaghi OM (2010) J Am Chem Soc 132:9262–9264

    Article  CAS  Google Scholar 

  8. Lin W, Evans OR, Xiong RG, Wang Z (1998) J Am Chem Soc 120:13272–13273

    Article  CAS  Google Scholar 

  9. Andruh M, Costes JP, Diaz C, Gao S (2009) Inorg Chem 48:3342–3359

    Article  CAS  Google Scholar 

  10. Jia LH, Li RY, Duan ZM, Jiang SD, Wang BW, Wang ZM, Gao S (2011) Inorg Chem 50:144–154

    Article  CAS  Google Scholar 

  11. Yang EC, Zhao HK, Ding B, Wang XG, Zhao XJ (2007) Cryst Growth Des 7:2009–2015

    Article  CAS  Google Scholar 

  12. Dai YM, Ma E, Tang E, Zhang J, Li ZJ, Huang XD, Yao YG (2005) Cryst Growth Des 5:1313–1315

    Article  CAS  Google Scholar 

  13. Hu S, Meng ZS, Tong ML (2010) Cryst Growth Des 10:1742–1748

    Article  CAS  Google Scholar 

  14. Wang ZQ, Kravtsov VC, Zaworotko MJ (2005) Angew Chem 44:2877–2880

    Article  CAS  Google Scholar 

  15. Kim J, Chen BL, Reineke TM, Li HL, Eddaoudi M, O’Keeffe M, Yaghi OM (2001) J Am Chem Soc 123:8239–8247

    Article  CAS  Google Scholar 

  16. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148–1150

    Article  CAS  Google Scholar 

  17. Shi Z, Li GH, Wang L, Gao L, Chen XB, Hua J, Feng SH (2004) Cryst Growth Des 4:25–27

    Article  CAS  Google Scholar 

  18. Rosi NL, Kim J, Eddaoudi M, Chen BL, O’Keeffe M, Yaghi OM (2005) J Am Chem Soc 127:1504–1518

    Article  CAS  Google Scholar 

  19. Xie JL, Han ZG, Pei WB, Zou Y, Ren XM (2011) Inorg Chem Commun 14:1266–1270

    Article  CAS  Google Scholar 

  20. Liu W, Yu J, Jiang J, Yuan L, Xu B, Liu Q, Qu B, Zhang G, Yan C (2011) CrystEngComm 13:2764–2773

    Article  CAS  Google Scholar 

  21. Cheng W, Wang JY, Chen C, Yue Q, Yaun HM, Chan JS, Wang SN (2003) Inorg Chem 42:944–946

    Article  Google Scholar 

  22. Xiong RG, Zuo JL, You XZ, Abrahams BF, Bai ZP, Che CM, Fun HK (2000) Chem Commun 20:2061–2062

    Article  Google Scholar 

  23. Wang ST, Hou Y, Wang EB, Li YG, Xu L, Peng J, Liu SX, Hu CW (2003) New J Chem 1144–1147

  24. Sheldrick GM (2008) Acta Cryst A64:112–122

    CAS  Google Scholar 

  25. Sheldrick GM (1998) SHELX97, Programs for crystal structure analysis. Institüt für Anorganische Chemie der Universität, Göttingen

    Google Scholar 

  26. Sheldrick GM (1996) SADABS, V2.01, Empirical Absorption Correction Program, Institüt für Anorganische Chemie der Universität, Göttingen

  27. Takashima H, Tara C, Namikawa S, Kato T, Araki Y, Ito O, Tsukahara K (2006) J Phys Chem B 110:26413–26423

    Article  CAS  Google Scholar 

  28. Huang XY, Li J (2007) J Am Chem Soc 129:3157–3162

    Article  CAS  Google Scholar 

  29. Wei KJ, Ni J, Xie YS, Liu QL (2007) Inorg Chem Commun 10:279–282

    Article  CAS  Google Scholar 

  30. Wei KJ, Xie YS, Ni J, Zhang M, Liu QL (2006) Cryst Growth Des 6:1341–1350

    Article  CAS  Google Scholar 

  31. Xie JL, Abrahams B, Wedd A (2008) Chem Commun 576–578

  32. Xu J, Yao X, Huang L, Li Y, Zheng H (2011) CrystEngComm 13:857–865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Monash Fellowship Program (JX) is gratefully acknowledged. YZ thanks the support by the National Natural Science Foundation of China (20901067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, W., Han, Z., Xie, J. et al. A New Coordination Polymer of Zn(II)-btc (H3btc = Benzene-1,3,5-tricarboxylic acid) with Protonated Acridine: Synthesis, Crystal Structure and Spectroscopic Properties. J Chem Crystallogr 42, 1007–1013 (2012). https://doi.org/10.1007/s10870-012-0349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0349-y

Keywords

Navigation