Skip to main content
Log in

Unusual Very Strong O–H···O Hydrogen Bonding in Zinc Complex: Crystal Structure and Photoluminescence of [Zn(HL)(bpy)2(H2O)]2(L) (L = O2C(CF2)6CO2, bpy = 2,2′bipyridine)

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The centrosymmetric dimer zinc compound, [Zn(HL)(bpy)2(H2O)]2(L), (L = O2C(CF2)6CO2, bpy = 2,2′-bipyridine), was obtained through the reaction of Zn(ClO4)2·6H2O, bpy and perfluorosuberic acid. Zn(II) centre is coordinated by four N atoms from two bpy ligands and two O atoms from a water molecule and monoanionic suberate ligand in a distorted octahedral coordination environment. The unit structure contains crystallographically centrosymmetric suberate anion which acts as a bidentate bridging ligand between each cationic monomer complex unit via hydrogen bonding. The very strong interaction of hydrogen bonding of hydoxycarbonyl–carboxylate system in solid state has O–H···O 2.436(3) Å (O···H = 1.25(6) Å and H···O = 1.19(6) Å). These units are also connected to each other via π···π, C–H···π, C–F···π and F···F stacking interactions, C–H···O, O–H···O and C–H···F hydrogen bonds giving rise to a multi-dimensional network. The complex is the first reported example of a coordination compound based on both bpy ligands together with perfluorosuberic acid. Moreover, compound exhibit intense solid state fluorescent emissions at room temperature.

Graphical Abstract

The synthesis and X-ray characterization of unusual centrosymmetric dimer zinc compound, [Zn(HL)(bpy)2(H2O)]2(L) (L = O2C(CF2)6CO2, bpy = 2,2′bipyridine), and its photoluminescence property have been reported. The very strong interaction of hydrogen bonding of hydroxycarbonyl-carboxylate system in solid state has O–H···O 2.436(4) Å (O···H = 1.25 (7) Å, H···O = 1.20(7) Å and OHO = 168.4°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao J, Wang J, Nie J (2011) Acta Crystallogr C67:m181

    CAS  Google Scholar 

  2. Wang J, Tao JQ, Xu XJ (2011) Acta Crystallogr C67:m173

    CAS  Google Scholar 

  3. Kitagawa S, Uemura K (2005) Chem Soc Rev 34:109

    Article  CAS  Google Scholar 

  4. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Acc Chem Res 43:58

    Article  CAS  Google Scholar 

  5. Yaghi OM, Li HL, Davis C, Richardson D, Groy TL (1998) Acc Chem Res 31:474

    Article  CAS  Google Scholar 

  6. Jenniefer SJ, Muthiah PT (2011) Acta Crystallogr C67:m69

    CAS  Google Scholar 

  7. Xu G, Xie Y (2010) Acta Crystallogr C66:m201

    CAS  Google Scholar 

  8. Seo J, Matsuda R, Sakamoto H, Bonneau C, Kitagawa S (2009) J Am Chem Soc 131:12792

    Article  CAS  Google Scholar 

  9. Kerbellec N, Kustaryono D, Haquin V, Etienne M, Daiguebonne C, Guillou O (2009) Inorg Chem 48:2837

    Article  CAS  Google Scholar 

  10. Kani I, Büyükgüngör O, Şişman F (2006) Z Nat B 61b:1198

    Google Scholar 

  11. Kani I, Şahin O, Yılmaz F, Büyükgüngör O (2006) Acta Cryst E62:m1909

    Google Scholar 

  12. Kani I, Darak C, Şahin O, Büyükgüngör O (2008) Polyhedron 27:1238

    Article  CAS  Google Scholar 

  13. Bruker APEX2 (Version 7.23A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison (2007)

  14. Sheldrick GM (2008) Acta Crystallogr A64:112

    CAS  Google Scholar 

  15. Sheldrick GM (1997) SHELXL-97. Universitat Göttingen, Göttingen

    Google Scholar 

  16. Spek AL (2005) Platon-A multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  17. Chun H, Dybtsev DN, Kim H, Kim K (2005) Chem Eur J 11:3521

    Article  CAS  Google Scholar 

  18. Sun CY, Dong B, Lv Q, Zheng XJ (2011) Z Anorg Allg Chem 637:276

    Article  CAS  Google Scholar 

  19. Ye BH, Xue F, Xue GQ, Ji LN, Mak TCW (1999) Polyhedron 18:1785

    Article  CAS  Google Scholar 

  20. Gilli P, Gilli G (2010) J Mol Struct 972:2

    Article  CAS  Google Scholar 

  21. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Am Chem Soc 116:909

    Article  CAS  Google Scholar 

  22. Kovalchukova OV, Kuz’mina NE, Zaitsev BE, Strashnova SB, Palkina KK (2002) Dokl Phys Chem 386:251

    Article  CAS  Google Scholar 

  23. Price DJ, Fristsch S, Wood PT, Powell AK (2005) Acta Crystallogr E61:m1174

    CAS  Google Scholar 

  24. Steiner T, Saenger W (1992) Acta Cyrstallogr. B48:819

    Article  CAS  Google Scholar 

  25. Steiner T, Saenger W (1993) J Am Chem Soc 114:10146

    Article  Google Scholar 

  26. Jeffrey GA, Mitra J (1984) J Am Chem Soc 106:5546

    Article  CAS  Google Scholar 

  27. Dunitz D, Taylor R (1997) Chem Eur J 3:89

    Article  CAS  Google Scholar 

  28. Lee H, Knobler CB, Hawthorne MF (2000) Chem Commun 2485

  29. Bianchi R, Forni A, Pilati T (2003) Chem Eur J 9:1631

    Article  CAS  Google Scholar 

  30. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555

    Article  CAS  Google Scholar 

  31. Rybalova TV, Yu Bagryanskaya I (2009) J Struct Chem 50:741

    Article  CAS  Google Scholar 

  32. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308

    Article  CAS  Google Scholar 

  33. Bondi AJ (1996) Phys Chem 68:441

    Google Scholar 

  34. Dautel OJ, Fourmijue (2000) J Org Chem 65:6479

    Article  CAS  Google Scholar 

  35. Madjaci NNL, Desiraju GR, Bilton C, Howard JAK, Allen FH (2000) Acta Cyristallogr. B56:1063

    Google Scholar 

  36. Prasanna MD, Guru Row TN (2000) Cryst Eng 3:135

    Article  CAS  Google Scholar 

  37. Choudhury R, Guru Row TN (2004) Cryst Growth Des 4:47

    Article  CAS  Google Scholar 

  38. Geraghty M, McCann M, Devereux M, McKee V (1999) Inorg Chim Acta 293:160

    Article  CAS  Google Scholar 

  39. Zheng SL, Yang JH, Yu XL, Chen XM, Wong WT (2004) Inorg Chem 43:830

    Article  CAS  Google Scholar 

  40. Tao J, Shi JX, Tong ML, Zhang XX, Chen XM (2001) Inorg Chem 40:6328

    Article  CAS  Google Scholar 

  41. Chen W, Wang JY, Chen C, Yue Q, Yuan HM, Chen JS, Wang SN (2003) Inorg Chem 42:944

    Article  CAS  Google Scholar 

  42. Yersin H, Vogler A (eds) (1987) Photochemistry and photophysics of coordination compounds. Springer, Berlin

    Google Scholar 

  43. Yang EC, Zhao HK, Ding B, Wang XG, Zhao XJ (2007) Cryst Growth Des 7:2009

    Article  CAS  Google Scholar 

  44. Zheng XY, Ye LQ, Wen YH (2011) J Mol Struct 987:132

    Article  CAS  Google Scholar 

  45. Guo HD, Guo XM, Batten SR, Song JF, Song SY, Dang S, Zheng GL, Tang JK, Zhang HJ (2009) Cryst Growth Des 9:1394

    Article  CAS  Google Scholar 

  46. Lu J, Zhao K, Fang QR, Xu JQ, Yu JH, Zhang X, Bie HY, Wang TG (2005) Cryst Growth Des 5:1091

    Article  CAS  Google Scholar 

  47. Zhang J, Xie YR, Ye Q, Xiong RG, Xue Z, You XZ (2003) Eur J Inorg Chem 2572

Download references

Acknowledgments

The author is grateful to Anadolu University and the Medicinal Plants and Medicine research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray Diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Kani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kani, İ. Unusual Very Strong O–H···O Hydrogen Bonding in Zinc Complex: Crystal Structure and Photoluminescence of [Zn(HL)(bpy)2(H2O)]2(L) (L = O2C(CF2)6CO2, bpy = 2,2′bipyridine). J Chem Crystallogr 42, 832–838 (2012). https://doi.org/10.1007/s10870-012-0321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0321-x

Keywords

Navigation