Skip to main content
Log in

Hydrogen Bonding in the Water Stabilized Structure of the Modified Unsymmetrically Substituted Viologen Chromophore, N-ethyl-N′-(2-phosphonoethyl)-4,4′-bipyridylium Dichloride

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of the modified unsymmetrically N,N′-substituted viologen chromophore, N-ethyl-N′-(2-phosphonoethyl)-4,4′-bipyridinium dichloride 0.75 hydrate (1) has been determined. Crystals are triclinic, space group P−1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)°. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O–H···O links [2.455(4), 2.464(4) Å] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O–H···Cl, 2.889(4), 2.896(4) Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl···water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.

Graphical Abstract

The crystal structure determination of unsymmetrically substituted viologen N-ethyl-N′-(2-phosphonoethyl)-4,4′-bipyridylium dichloride 0.75 hydrate shows the presence of strong intermolecular phosphonate O–H···O and O–H···Cl interactions together with unusual cyclic hydrogen-bonded bis(chloride···water) dianion units giving one-dimensional chain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Michaelis L (1932) Biochem Z 250:564

    CAS  Google Scholar 

  2. Michaelis L, Hill ES (1933) J Am Chem Soc 55:1481

    Article  CAS  Google Scholar 

  3. O’Neil MJ (ed) (2001) The Merck index, 13th edn. Merck & Co. Inc, Whitehouse Station, p 1782

    Google Scholar 

  4. Asakura N, Hiraishi T, Kamachi T, Okura I (2001) Mol Catal A Chem 172:1

    Article  CAS  Google Scholar 

  5. Sakamoto M, Kamachi T, Okura I, Ueno A, Mihara H (2001) Biopolymers 59:103

    Article  CAS  Google Scholar 

  6. Toba R, Maria Quintela J, Peinador C, Roman E, Kaifer AE (2001) Chem Commun 9:857

    Article  CAS  Google Scholar 

  7. Suzuki M, Waraksa CC, Mallouk TE, Nakayama H, Hanabusa K (2002) J Phys Chem B 106:4227

    Article  CAS  Google Scholar 

  8. Amao Y, Tomonou Y, Okura I (2003) Sol Energy Mater Sol Cells 79:103

    Article  CAS  Google Scholar 

  9. Cinnsealach R, Boschloo G, Rao SN, Fitzmaurice D (1999) Sol Energy Mater Sol Cells 57:107

    Article  CAS  Google Scholar 

  10. Sotomayor J, Will G, Fitzmaurice D (2000) J Mater Chem 10:685

    Article  CAS  Google Scholar 

  11. Will G, Boschloo G, Nagaraja Rao S, Fitzmaurice D (1999) J Phys Chem B 103:8067

    Article  CAS  Google Scholar 

  12. Will G, Nagaraja Rao JSS, Fitzmaurice D (1999) J Mater Chem 9:2297

    Article  CAS  Google Scholar 

  13. Long B, Nikitin K, Fitzmaurice D (2003) J Am Chem Soc 125:15490

    Article  CAS  Google Scholar 

  14. Russell JH, Wallwork SC (1972) Acta Crystallogr B28:1527

    Google Scholar 

  15. Cousson A, Bachet B, Kokel B, Hubert-Habart M (1993) Acta Crystallogr C49:942

    CAS  Google Scholar 

  16. Wolkers H, Stegmann R, Frenking G, Dehnicke K, Fenske D, Baum G (1993) Z Naturforsch B Chem Sci 48:1341

    CAS  Google Scholar 

  17. Argay G, Kalman A, Ribar B (1995) Z Kristallogr 210:455

    Article  CAS  Google Scholar 

  18. Hu T (2009) Acta Crystallogr E65:o1162

    CAS  Google Scholar 

  19. Pettitt BM, Rossky PJ (1986) J Chem Phys 84:5836

    Article  CAS  Google Scholar 

  20. Gao J, Boudon G, Wipff G (1991) J Am Chem Soc 113:9610

    Article  CAS  Google Scholar 

  21. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555

    Article  CAS  Google Scholar 

  22. Kleinman EF, Bordner J, Newhouse BJ, MacFerrin K (1992) J Am Chem Soc 114:4945

    Article  CAS  Google Scholar 

  23. Mak TCW (1984) Inorg Chem 23:620

    Article  CAS  Google Scholar 

  24. Lentz BR, Scheraga HA (1969) J Chem Phys 50:5296

    Google Scholar 

  25. Wilson GJ (2006) PhD thesis, Queensland University of Technology, Brisbane, Australia

  26. CrysAlis CCD, CrysAlis RED (2008) X-ray data acquisition and reduction programs. Oxford Diffraction Ltd, Abington (version 1.171.32.5)

    Google Scholar 

  27. Sheldrick GM (1996) SADABS, Absorption correction program for area detectors. University of Göttingen, Germany

    Google Scholar 

  28. Sheldrick GM (2008) Acta Crystallogr A64:112

    CAS  Google Scholar 

  29. Farrugia LJ (1999) J Appl Crystallogr 32:837

    Article  CAS  Google Scholar 

  30. Spek AL (2009) Acta Crystallogr D65:148

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the School of Physical and Chemical Sciences (Queensland University of Technology) and the Commonwealth Scientific and Industrial Research Organisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G., Will, G.D. & Wilson, G.J. Hydrogen Bonding in the Water Stabilized Structure of the Modified Unsymmetrically Substituted Viologen Chromophore, N-ethyl-N′-(2-phosphonoethyl)-4,4′-bipyridylium Dichloride. J Chem Crystallogr 40, 248–252 (2010). https://doi.org/10.1007/s10870-009-9642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9642-9

Keywords

Navigation