Skip to main content

Advertisement

Log in

Interaction between C18 fatty acids and DOPE PEG2000 in Langmuir monolayers: effect of degree of unsaturation

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this study, we address the effect of the cis-double bond in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamide-N-[methoxy(polyethylene glycol)-2000, DOPE PEG2000 (DP), on the Langmuir monolayer of C18 fatty acids—namely, stearic acid (SA), oleic acid (L1), linoleic acid (L2), and linolenic acid (L3)—with the same head group but different degrees of saturation on their hydrocarbon chains. Negative values of Gibbs free energy of mixing (ΔG mix) were obtained throughout the investigated ranges of the unsaturated C18 fatty-acid (L1, L2 and L3) mixed systems, indicating that very strong attractions occurred between molecules in the monolayers. The bend and kink effects from the cis-double bond(s) in the hydrocarbon chain affected the membrane fluidity and molecular packing in the monolayers, which resulted in a greater interaction between unsaturated C18 fatty acids and DP. The most thermodynamically stable mole composition of unsaturated C18 fatty acids to DP was observed at 50:1; this ratio is suggested to be the best mole ratio and will be subsequently used to prepare DP–C18 fatty-acid nanoliposomes. The presence of cis-double bonds in both hydrocarbon chains of DOPE in DP also created an imperfection in the membrane structure of lipid-drug delivery systems, which is expected to enhance lipid-based systems for antibody conjugation and drug encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chonn, A., Cullis, P.R.: Recent advances in liposome technologies and their applications for systemic gene delivery. Adv. Drug Deliv. Rev. 30, 73–83 (1998)

    Article  Google Scholar 

  2. Allen, C., Santos, N.D., Gallagher, R., Chiu, G., Shu, Y., Li, W., Johnstone, S., Janoff, A., Mayer, L., Webb, M., Bally, M.: Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene) glycol. Biosci. Rep. 22, 225–250 (2002)

    Article  Google Scholar 

  3. Moghimia, S.M., Szebenib, J.: Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003)

    Article  Google Scholar 

  4. Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005)

    Article  Google Scholar 

  5. Immordino, M.L., Dosio, F., Cattel, L.: Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine. 1, 297–315 (2006)

    Article  Google Scholar 

  6. Zhang, Y.: Stealth Liposomes: the silent nanobombers. Trends in Bio/Pharm. Industry. 19–24 (2008)

  7. Chang, H.I., Yeh, M.K.: Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine 7, 49–60 (2012)

    Google Scholar 

  8. Nag, O.K., Awasthi, V.: Surface engineering of liposomes for stealth behavior. Pharmaceutics 5, 542–569 (2013)

    Article  Google Scholar 

  9. Anselmo, A.C., Mitragotri, S.: An overview of clinical and commercial impact of drug delivery systems. J. Control. Release. 190, 15–28 (2014)

    Article  Google Scholar 

  10. Ng, K.Y., Zhao, L., Liu, Y., Mahapatro, M.: The effects of polyethyleneglycol (PEG)-derived lipid on the activity of target-sensitive immunoliposome. Int. J. Pharm. 193, 157–166 (2000)

    Article  Google Scholar 

  11. Yanga, T., Choi, M.K., Cuia, F.D., Kim, J.S., Chung, S.J., Shimb, C.K., Kim, D.D.: Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J. Control. Release 120, 169–177 (2007)

    Article  Google Scholar 

  12. Manjappa, A.S., Chaudhari, K.R., Venkatarajua, M.P., Dantuluri, P., Nanda, B., Sidda, C., Sawant, K.K., Murthy, R.S.R.: Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J. Control. Release 150, 2–22 (2011)

    Article  Google Scholar 

  13. Gunaseelan, S., Gunaseelan, K., Zhang, M.D.X., Sinko, P.J.: Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev. 62, 518–531 (2010)

    Article  Google Scholar 

  14. Working, P.K., Newman, M.S., Huang, S.K., Mayhew, E., Vaage, J., Lasic, D.D.: Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in stealth® liposomes (Doxil®). J. Liposome Res. 4, 667–687 (1994)

    Article  Google Scholar 

  15. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013)

    Article  Google Scholar 

  16. Blume, G., Cevc, G.: Molecular mechanism of the lipid vesicle longevity in vivo. Biochim. Biophys. Acta. 1146, 157–168 (1993)

    Article  Google Scholar 

  17. Lee, A.G.: Lipid–protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003)

    Article  Google Scholar 

  18. Seu, K.J., Cambrea, L.R., Everly, R.M., Hovis, J.S.: Influence of lipid chemistry on membrane fluidity: tail and headgroup interactions. Biophys. J. 91, 3727–3735 (2006)

    Article  ADS  Google Scholar 

  19. Lingwood, L., Simons, K.: Lipid rafts as a membrane-organizing principle. Science. 327, 46–50 (2010)

    Article  ADS  Google Scholar 

  20. Ma, G., Allen, H.C.: DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. Langmuir. 22, 5341–5349 (2006)

    Article  Google Scholar 

  21. Lingwood, D., Simons, K.: Lipid rafts as a membrane-organizing principle. Science. 327, 46–50 (2010)

    Article  ADS  Google Scholar 

  22. Barelli, H., Antonny, B.: Lipid unsaturation and organelle dynamics. Curr. Opin. Cell Biol. 41, 25–32 (2016)

    Article  Google Scholar 

  23. Sezgin, E., Levental, I., Mayor, S., Eggeling, C.: The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18(6), 361–374 (2017). doi:10.1038/nrm.2017.16

  24. Johnston, M.J., Semple, S.C., Klimuk, S.K., Ansell, S., Maurer, N., Cullis, P.R.: Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta 1768, 1121–1127 (2007)

    Article  Google Scholar 

  25. Bestman-Smith, J., Gourde, P., Desormeaux, A., Tremblay, M.J., Bergeron, M.G.: Sterically stabilized liposomes bearing anti-HLA-DR antibodies for targeting the primary cellular reservoirs of HIV-1. Biochim. Biophys. Acta. 1468, 161–174 (2000)

    Article  Google Scholar 

  26. Loomis, K., Smith, B., Feng, Y., Garg, H., Yavlovich, A., Campbell-Massa, R., Dimitrov, D.S., Blumenthal, R., Xiao, X., Puri, A.: Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv. Exp Mol. Pathol. 88, 238–249 (2010)

    Article  Google Scholar 

  27. Lehtinen, J., Raki, M., Bergström, K.A., Uutela, P., Lehtinen, K., Hiltunen, A., Pikkarainen, J., Liang, H., Pitkänen, S., Määttä, A.M., Ketola, R.A., Yliperttula, M., Wirth, T., Urtti, A.: Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PLoS ONE 7, 1–10 (2012)

    Article  Google Scholar 

  28. Yan, F., Li, L., Deng, Z., Jin, Q., Chen, J., Yang, W., Yeh, C.K., Wu, J., Shandas, R., Liu, X., Zheng, H.: Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release 166, 246–255 (2013)

    Article  Google Scholar 

  29. Kroon, J., Metselaar, J.M., Storm, G., van der Pluijm, G.: Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat. Rev. 40, 578–584 (2014)

    Article  Google Scholar 

  30. Foreman, M.B., Coffman, J.P., Murcia, M.J., Cesana, S., Jordan, R., Smith, G.S., Naumann, C.A.: Gelation of amphiphilic lipopolymers at the air−water interface: 2D analogue to 3D gelation of colloidal systems with grafted polymer chains. Langmuir 19, 326–332 (2003)

    Article  Google Scholar 

  31. Cavalcanti, L.P., Tho, I., Konovalov, O., Fossheim, S., Brandl, M.: Compressibility study of quaternary phospholipid blend monolayers. Colloids Surf. B 85, 153–160 (2011)

    Article  Google Scholar 

  32. Yoshizawa, Y., Kono, Y., Ogawara, K.I., Kimura, T., Higaki, K.: PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int. J. Pharm. 412, 132–141 (2011)

    Article  Google Scholar 

  33. Gaillard, P.J., Appeldoorn, C.C.M., Dorland, R., van Kregten, J., Manca, F., Vugts, D.J., Windhorst, B., van Dongen, G.A., de Vries, H.E., Maussang, D., van Tellingen, O.: Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin. PLoS ONE 9, 1–10 (2014)

    Google Scholar 

  34. Lundberg, B.B., Griffiths, G., Hansen, H.J.: Cellular association and cytotoxicity of anti-74-targeted lipid drug carriers in B lymphoma cells. J. Control. Release 94, 155–161 (2004)

    Article  Google Scholar 

  35. Lu, R.M., Chen, M.S., Chang, D.K., Chiu, C.Y., Lin, W.C., Yan, S.L., Wang, Y.P., Kuo, Y.S., Yeh, C.Y., Lo, A., Wu, H.C.: Targeted drug delivery systems mediated by a novel peptide in breast cancer therapy and imaging. PLoS ONE 8, 1–10 (2013)

    Google Scholar 

  36. Girard-Egrot, A.P., Godoy, S., Blum, L.J.: Enzyme association with lipidic Langmuir–Blodgett films: interests and applications in nanobioscience. Adv. Colloid Interf. Sci. 116, 205–225 (2005)

    Article  Google Scholar 

  37. Wydro, P., Krajewska, B., Hąc-Wydro, K.: Chitosan as a lipid binder: a Langmuir monolayer study of chitosan–lipid interactions. Biomacromolecules 8, 2611–2617 (2007)

    Article  Google Scholar 

  38. Hąc-Wydro, K., Jędrzejek, K., Dynarowicz-Łątka, P.: Effect of saturation degree on the interactions between fatty acids and phosphatidylcholines in binary and ternary Langmuir monolayers. Colloids Surf. B 72, 101–111 (2009)

    Article  Google Scholar 

  39. Hąc-Wydro, K., Wydro, P.: The influence of fatty acids on model cholesterol/phospholipid membranes. Chem. Phys. Lipids 150, 66–81 (2007)

    Article  Google Scholar 

  40. Gew, L.T., Misran, M.: Albumin-fatty acid interactions at monolayer interface. Nanoscale Res. Lett. 9, 218 (2014). doi:10.1186/1556-276X-9-218

    Article  ADS  Google Scholar 

  41. Crawford, N.F., Leblanc, R.M.: Serum albumin in 2D: a Langmuir monolayer approach. Adv. Colloid Interf. Sci. 207, 131–138 (2014)

    Article  Google Scholar 

  42. Needham, D., Kim, D.H.: PEG-covered lipid surfaces: bilayers and monolayers. Colloids Surf. B 18, 183–195 (2000)

    Article  Google Scholar 

  43. Sriwongsitanont, S., Ueno, M.: Physicochemical properties of PEG-grafted liposomes. Chem. Pharm. Bull. 50(9), 1238–1244 (2002)

    Article  Google Scholar 

  44. Rovira-Bru, M., Thompson, D.H., Szleifer, I.: Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Biophys. J. 83(5), 2419–2439 (2002)

    Article  ADS  Google Scholar 

  45. Garbuzenko, O., Barenholz, Y., Priev, A.: Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 150, 66–81 (2005)

    Google Scholar 

  46. Gew, L.T., Misran, M.: Energetic mixing of anti-SNAP25 on lipid monolayers: degree of saturation of C18 fatty acids. Surf. Interface Anal. 49(5), 388–397 (2016). doi:10.1002/sia.6144

  47. Davies, J.T., Rideal, E.K.: Interfacial Phenomena. Academic Press, New York (1963)

    Google Scholar 

  48. Gaines, G.L.: Insoluble Monolayers at Liquid-Gas Interfaces. Interscience, New York (1966)

    Google Scholar 

  49. Gupta, R.K., Manjuladevi, V.: Molecular interactions at interfaces. In: Aurelia, M. (ed.) Molecular Interactions, pp 81–104. InTech Open Access Publisher, Crotia (2012)

    Google Scholar 

  50. Buys, A.V., Rooy, M.J.V., Soma, P., Papendorp, D.V., Lipinski, B., Pretorius, E.: Change in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc. Diabetol. 12, 25 (2013)

    Article  Google Scholar 

  51. Abednejab, A.S., Amoabediny, G., Ghaee, A.: Surface modification of polypropylene membrane by polyethylene glycol graft polymerization. Mater. Sci. Eng. C 42, 443–450 (2014)

    Article  Google Scholar 

  52. Johnson, D., Hilal, N.: Characterisation and quantification of membrane surface properties using atomic force microscopy: a comprehensive review. Desalination 356, 149–164 (2015)

    Article  Google Scholar 

  53. De Oliveira, R.R.L., Albuquerque, D.A.C., Cruz, T.G.S., Yamaji, F.M., Leite, F.L.: Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications. In: Victor, B. (ed.) Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, pp. 147–175. INTECH Open Access Publisher, Croatia (2012)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Fundamental Research Grant Scheme (FP013-2015A) and UMRG Flagship (RP022C-16SUS), Malaysia. Gew would like to express her thanks to Phra Phrom for his blessing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misni Misran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gew, L.T., Misran, M. Interaction between C18 fatty acids and DOPE PEG2000 in Langmuir monolayers: effect of degree of unsaturation. J Biol Phys 43, 397–414 (2017). https://doi.org/10.1007/s10867-017-9459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-017-9459-2

Keywords

Navigation