Skip to main content
Log in

The role of encapsulation by β-cyclodextrin in the interaction of raloxifene with macromolecular targets: a study by spectroscopy and molecular modeling

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We report the binding of the drug raloxifene with Calf thymus DNA (ctDNA) and bovine serum albumin (BSA) in the presence and absence of β-cyclodextrin (β-CD) and explain the influence of β-cyclodextrin on the binding of the drug to macromolecules. UV-Vis absorption, fluorescence, proton nuclear magnetic resonance and two-dimensional rotating-frame nuclear overhauser effect spectroscopic techniques are used to study the stoichiometry and the binding strength of the complexes. Molecular modeling is used in combination with other techniques to propose the structure of the inclusion complex and the interaction with ctDNA. The Stern–Volmer quenching constants of the interaction of raloxifene with ctDNA in aqueous and in β-CD solution are compared. The competition for binding of ctDNA with raloxifene and Methylene Blue is studied. The apparent binding constant and the number of binding sites for the binding of raloxifene with BSA in aqueous solution are significantly different from those in the presence of β-CD. The influence of β-CD on the binding of the small molecules with biological macromolecules is discussed. We infer that the binding strengths between raloxifene and macromolecules, viz., ctDNA and BSA are influenced by the β-CD encapsulation. These results may suggest new ways to tune the drug binding to biomacromolecules by encapsulating specific moieties of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jordan, V.C.: Selective estrogen receptor modulation: concept and consequences in cancer. Canc. Cell 5, 207–213 (2004)

    Article  Google Scholar 

  2. Jeffrey, W.M., Skerjanec, A., Knadler, M.P., Ghosh, A., Sandra, R.B.A.: Divergent effects of raloxifene HCl on the pharmacokinetics and pharmacodynamics of Warfarin. Pharma. Res. 18, 1024–1028 (2001)

    Article  Google Scholar 

  3. Olevsk, O., Martino, S.: Randomized clinical trials of raloxifene: reducing the risk of osteoporosis and breast cancer in postmenopausal women. Menopause 15, 790–796 (2008)

    Article  Google Scholar 

  4. Stepan, J.J., Alenfeld, F., Boivin, G., Feyen, J.H.M., Lakatos, P.: Mechanisms of action of antiresorptive therapies of postmenopausal osteoporosis. Endocr. Regul. 37, 227–240 (2003)

    Google Scholar 

  5. Mamta, K., Susan, H., Powel, B.: Defining the role of raloxifene for the prevention of breast cancer. J. Natl. Canc. Inst. 96, 1731–1733 (2004)

    Article  Google Scholar 

  6. Craig, V.J., Monica, M.: Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr. Rev. 20, 253–278 (1999)

    Google Scholar 

  7. Bryant, H., Glasebrook, A., Yang, N., Sato, M.: An estrogen receptor basis for raloxifene action in bone. J. Steroid Biochem. Mol. Biol. 69, 37–44 (1999)

    Article  Google Scholar 

  8. Black, L., Goode, R.: Uterine bioassay of Tamoxifen, Trioxifene and a new estrogen antagonist (Ly117018) in rats and mice. Life Sci. 26, 1453–1458 (1980)

    Article  Google Scholar 

  9. Fermeglia, M., Ferrone, M., Lodi, A., Pricl, S.: Host–guest inclusion complexes between anticancer drugs and β-cyclodextrin: computational studies. Carbohyd. Polym. 53, 15–44 (2003)

    Article  Google Scholar 

  10. Kohler, G., Grabner, G., Klein, C.T., Marconi, G., Mayer, B., Monti, S., Rechthaler, K., Rotkiewicz, K., Viernstein, H., Wolschann, P.: Structure and spectroscopic properties of cyclodextrin inclusion complexes. J. Incl. Phenom. Mol. Recognit. Chem. 25, 103–108 (1996)

    Article  Google Scholar 

  11. Rui, Z., Tianwei, T., Corine, S.: NMR studies on puerarin and its interaction with β-Cyclodextrin. J. Biol. Phys. 37, 387–400 (2011)

    Article  Google Scholar 

  12. El-Shishtawy, R.M., Oliveira, A.S., Almeida, P., Ferreira, D.P., Conceiçao, D.S., Ferreira, L.F.V.: Photophysical studies of a new water-soluble indocarbocyanine dye adsorbed onto microcrystalline cellulose and β-cyclodextrin. Molecules 18, 5648–5668 (2013)

    Article  Google Scholar 

  13. Upadhyay, S.K., Ali, S.M.: Solution structure of loperamide and β-cyclodextrin inclusion complexes using NMR spectroscopy. J. Chem. Sci. 121, 521–527 (2009)

    Article  Google Scholar 

  14. Enoch, I.V.M.V, Yousuf, S.: β-Cyclodextrin inclusion complexes of 2-hydroxyfluorene and 2-hydroxy-9-fluoreneone: differences in stoichiometry and excited state prototropic equilibrium. J. Solut. Chem. 42, 470–484 (2013)

    Article  Google Scholar 

  15. Dillingham, M.S., Tibbles, K.L., Hunter, J.L., Bell, J.C., Kowalczykowski, S.C., Webb, M.R.: Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity. Biophys. J. 95, 3330–3339 (2008)

    Article  ADS  Google Scholar 

  16. Williams, A.K., Desilva, S.C., Bhatta, A., Rawal, B., Liu, M., Korobkovam, E.A.: Determination of the drug–DNA binding modes using fluorescence-based assays. Anal. Biochem. 422, 66–73 (2012)

    Article  Google Scholar 

  17. Neefjes, J., Dantuma, N.P.: Fluorescent probes for proteolysis: tools for drug discovery. Nat. Rev. Drug Disco 3, 58–69 (2004)

    Article  Google Scholar 

  18. Dineshkumar, B., Vigneshkumar, P., Bhuvaneshwaran, S.P., Mitra, A.: Advanced drug designing softwares and their applications in medical research. Int. J. Pharm. Pharm. Sci. 2, 16–18 (2010)

    Google Scholar 

  19. Ling, Y.Z., Yan, J.J., Jun, P.Z.B.L.: β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro. Front. Mater. Sci. 6, 259–267 (2012)

    Article  ADS  Google Scholar 

  20. Dua, K., Pabreja, K., Ramana, M.V., Lather, V.: Dissolution behavior of β-cyclodextrin molecular inclusion complexes of aceclofenac. J. Pharm. Bioallied. Sci. 3, 417–425 (2011)

    Article  Google Scholar 

  21. Lin, S.Y., Kao, Y.H.: Solid particulates of drug- β-cyclodextrin inclusion complexes directly prepared by a spray-drying technique. Int. J. Pharm. 56, 249–259 (1989)

    Article  Google Scholar 

  22. Martin Del Valle, E.M.: Cyclodextrins and their uses: a review. Proc. Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  23. Bischoff, G., Hoffmann, S.: DNA-binding of drugs used in medicinal therapies. Curr. Med. Chem. 9, 312–348 (2002)

    Article  Google Scholar 

  24. Gurova, K.: New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Futur. Oncol. 5, 1685–1704 (2010)

    Article  Google Scholar 

  25. Ridler, P.J., Jennings, B.R.: Electro-optical fluorescence studies on the DNA binding of medically active drugs. Phys. Med. Biol. 28, 625–632 (1983)

    Article  Google Scholar 

  26. Zdenek, M., Stephen, N., Bohdan, S.: Protein and drug interactions in the minor groove of DNA. Nucl. Acid. Res. 30, 1182–1191 (2002)

    Article  Google Scholar 

  27. Schrödinger Software: Glide, A Complete Solution for Ligand Receptor Docking [Computer Software]. Schrödinger, LLC, Portland, OR, USA (2009)

  28. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S.: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 25, 1739–1749 (2004)

    Article  Google Scholar 

  29. Enoch, I.V.M.V., Swaminathan, M.: Fluorimetric study on molecular recognition of β-cyclodextrin with 2-amino-9-fluorenone. J. Fluoresc. 16, 501–510 (2006)

    Article  Google Scholar 

  30. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd ed., pp 280–281. Springer (2006)

  31. Bernstein, H.J.: RasMol 2.7.5.2. Molecular Graphics Visualisation Tool. Based on RasMol 2.6 by Roger Sayle Biomolecular Structures Group Glaxo Wellcome Research & Development, Stevenage, Hertfordshire, UK (2011)

  32. Lu, Y., Wang, G.K., Lv, J., Zhang, G.S., Liu, Q.F.: Study on the interaction of an anthracycline disaccharide with DNA by spectroscopic techniques and molecular modeling. J. Fluoresc. 21, 409–414 (2011)

    Article  Google Scholar 

  33. Li, X., Yan, S., Zhang, Y., Ye, L.: Study on the interaction of raloxifene and bovine serum albumin by the Tachiya model. J. Solut. Chem. 39, 1187–1199 (2010)

    Article  Google Scholar 

  34. Sameena, Y., Enoch, I.V.M.V.: Binding interactions of naringenin and naringin with calf thymus DNA and the role of β-cyclodextrin in the binding. AAPS Pharm. Sci. Tech. 14, 770–781 (2013)

    Article  Google Scholar 

  35. Lu, Y., Lv, J., Zhang, G., Wang, G., Liu, Q.: Interaction of an anthracycline disaccharide with ctDNA: investigation by spectroscopic technique and modeling studies. Spectrochim. Acta A: Mol Biomol Spectrosc. 75, 1511–1515 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the SERB–Department of Science and Technology (DST), Government of India (Project file: SR/FT/CS-062/2009). We express our sense of gratitude to the DST. We extend our thanks to SAIF, Indian Institute of Technology–Madras, Chennai, for the help in NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel V. M. V. Enoch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sameena, Y., Sudha, N., Chandrasekaran, S. et al. The role of encapsulation by β-cyclodextrin in the interaction of raloxifene with macromolecular targets: a study by spectroscopy and molecular modeling. J Biol Phys 40, 347–367 (2014). https://doi.org/10.1007/s10867-014-9355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9355-y

Keywords

Navigation