Skip to main content
Log in

Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson, C.H., Elliott, J.A., Foster, R.: Entrainment of circadian programs. Chronobiol. Int. 20, 741–774 (2003)

    Article  Google Scholar 

  2. Rensing, L., Ruoff, P.: Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19, 807–864 (2002)

    Article  Google Scholar 

  3. Pittendrigh, C.S.: On temperature independence in the clock system controlling emergence time in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 40, 1018–1029 (1954)

    Article  ADS  Google Scholar 

  4. Waltenberger, H., Schneid, C., Grosch, J.O., Bareiss, A., Mittag, M.: Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy 1 from Chlamydomonas reinhardtii. Mol. Genet. Genom. 265, 180–188 (2001)

    Article  Google Scholar 

  5. Kiaulehn, S., Voytsekh, O., Fuhrmann, M., Mittag, M.: The presence of UG-repeat sequences in the 3′-UTRs of reporter luciferase mRNAs mediates circadian expression and can determine acrophase in Chlamydomonas reinhardtii. J. Biol. Rhythms 22, 275–277 (2007)

    Article  Google Scholar 

  6. Iliev, D., Voytsekh, O., Schmidt, E.M., Fiedler, M., Nykytenko, A., Mittag, M.: A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock. Plant Physiol. 142, 797–806 (2006)

    Article  Google Scholar 

  7. Serrano, G., Herrera-Palau, R., Romero, J.M., Serrano, A., Coupland, G., Valverde, F.: Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr. Biol. 19, 359–368 (2009)

    Article  Google Scholar 

  8. Matsuo, T., Okamoto, K., Onai, K., Niwa, Y., Shimogawara, K., Ishiura, M.: A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev. 22, 918–930 (2008)

    Article  Google Scholar 

  9. Schmidt, M., Gessner, G., Luff, M., Heiland, I., Wagner, V., Kaminski, M., Geimer, S., Eitzinger, N., Reissenweber, T., Voytsekh, O., Fiedler, M., Mittag, M., Kreimer, G.: Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18, 1908–1930 (2006)

    Article  Google Scholar 

  10. Voytsekh, O., Seitz, S.B., Iliev, D., Mittag, M.: Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. Plant Physiol. 147, 2179–2193 (2008)

    Article  Google Scholar 

  11. Seitz, S.B., Voytsekh, O., Mohan, K.M., Mittag, M.: The role of an E-box element: multiple functions and interacting partners. Plant Signal. Behav. 5, 1077–1080 (2010)

    Article  Google Scholar 

  12. Mehra, A., Shi, M., Baker, C.L., Colot, H.V., Loros, J.J., Dunlap, J.C.: A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 137, 749–760 (2009)

    Article  Google Scholar 

  13. Portolés, S., Más, P.: The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 6, e1001201 (2010)

    Article  Google Scholar 

  14. Seitz, S.B., Weisheit, W., Mittag, M.: Multiple roles and interaction factors of an E-box element in Chlamydomonas reinhardtii. Plant Physiol. 152, 2243–2257 (2010)

    Article  Google Scholar 

  15. Ruoff, P., Rensing, L., Kommedal, R., Mohsenzadeh, S.: Modeling temperature compensation in chemical and biological oscillators. Chronobiol. Int. 14, 499–510 (1997)

    Article  Google Scholar 

  16. Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)

    Article  Google Scholar 

  17. Zhao, B., Schneid, C., Iliev, D., Schmidt, E.-M., Wagner, V., Wollnik, F., Mittag, M.: The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits. Eukaryot. Cell 3, 815–825 (2004)

    Article  Google Scholar 

  18. Kucho, K.-I., Okamoto, K., Tabata, S., Fukuzawa, H., Ishiura, M.: Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Mol. Biol. 57, 889–906 (2005)

    Article  Google Scholar 

  19. Mittag, M.: Conserved circadian elements in phylogenetically diverse algae. Proc. Natl. Acad. Sci. U. S. A. 93, 14401–14404 (1996)

    Article  ADS  Google Scholar 

  20. Heinrich, R., Schuster, S.: The Regulation Of Cellular Systems. Chapman & Hall, New York (1996)

    Book  MATH  Google Scholar 

  21. Dibner, C., Sage, D., Unser, M., Bauer, C., d’Eysmond, T., Naef, F., Schibler, U.: Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28, 123–134 (2009)

    Article  Google Scholar 

  22. Ruoff, P., Vinsjevik, M., Monnerjahn, C., Rensing, L.: The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J. Biol. Rhythms 14, 469–479 (1999)

    Article  Google Scholar 

  23. Wolf, J., Becker-Weimann, S., Heinrich, R.: Analysing the robustness of cellular rhythms. Syst. Biol. (Stevenage) 2, 35–41 (2005)

    Article  Google Scholar 

  24. Leloup, J.C., Goldbeter, A.: Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the per protein in Drosophila. Chronobiol. Int. 14, 511–520 (1997)

    Article  Google Scholar 

  25. Hastings, J.W., Sweeney, B.M.: On the mechanism of temperature independence in a biological clock. Proc. Natl. Acad. Sci. U. S. A. 43, 804–811 (1957)

    Article  ADS  Google Scholar 

  26. Ito, C., Goto, S.G., Tomioka, K., Numata, H.: Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster. J. Biol. Rhythms 26, 14–23 (2011)

    Article  Google Scholar 

  27. Buhr, E.D., Yoo, S.-H., Takahashi, J.S.: Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010)

    Article  ADS  Google Scholar 

  28. Yoshii, T., Hermann, C., Helfrich-Förster, C.: Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature. J. Biol. Rhythms 25, 387–398 (2010)

    Article  Google Scholar 

  29. Ruoff, P., Rensing, L.: The temperature-compensated Goodwin model simulates many circadian clock properties. J. Theor. Biol. 179, 275–285 (1996)

    Article  Google Scholar 

  30. Takeuchi, T., Hinohara, T., Kurosawa, G., Uchida, K.: A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles. J. Theor. Biol. 246, 195–204 (2007)

    Article  MathSciNet  Google Scholar 

  31. Granada, A.E., Herzel, H.: How to achieve fast entrainment? The timescale to synchronization. PLoS ONE 4, e7057 (2009)

    Article  ADS  Google Scholar 

  32. Gonze, D., Goldbeter, A.: Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles. J. Stat. Phys. 101, 649–663 (2000)

    Article  ADS  MATH  Google Scholar 

  33. Boulos, Z., Macchi, M.M., Terman, M.: Twilights widen the range of photic entrainment in hamsters. J. Biol. Rhythms 17, 353–363 (2002)

    Article  Google Scholar 

  34. Geier, F., Becker-Weimann, S., Kramer, A., Herzel, H.: Entrainment in a model of the mammalian circadian oscillator. J. Biol. Rhythms 20, 83–93 (2005)

    Article  Google Scholar 

  35. Johnson, C.H.: Forty years of PRCs–what have we learned? Chronobiol. Int. 16, 711–743 (1999)

    Article  Google Scholar 

  36. Rand, D.A., Shulgin, B.V., Salazar, D., Millar, A.J.: Design principles underlying circadian clocks. J. R. Soc. Interface 1, 119–30 (2004)

    Article  Google Scholar 

  37. Bruce, V.G.: Mutants of the biological clock in Chlamydomonas reinhardtii. Genetics 70, 537–548 (1972)

    Google Scholar 

  38. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI–a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)

    Article  Google Scholar 

  39. Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Annu. Rev. Phys. Chem. 34, 419–461 (1983)

    Article  ADS  Google Scholar 

  40. Kramer, M.A., Rabitz, H., Calo, J.M.: Sensitivity analysis of oscillatory systems. Appl. Math. Model. 8, 328–340 (1984)

    Article  MATH  Google Scholar 

  41. Gunawan, R., Doyle, F.J.: Isochron-based phase response analysis of circadian rhythms. Biophys. J. 91, 2131–2141 (2006)

    Article  ADS  Google Scholar 

  42. Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge funding from the German Federal Ministry of Education and Research (BMBF, project no. 0315260A) within the Research Initiative in Systems Biology (FORSYS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Heiland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiland, I., Bodenstein, C., Hinze, T. et al. Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii . J Biol Phys 38, 449–464 (2012). https://doi.org/10.1007/s10867-012-9264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9264-x

Keywords

Navigation