Skip to main content
Log in

Assessment and comparison of neural morphology through metrical feature extraction and analysis in neuron and neuron–glia cultures

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The morphology of dissociated single cerebellar Purkinje cells obtained from wild-type P1 CD1 mice was assessed in the absence and in the presence of glia. A dedicated noninvasive technique based on optical microscopy was developed. Image processing algorithms were implemented to extract metrical features characterizing cell structure and dendritic arborization. The morphological features were analyzed in order to identify quantitative differences in Purkinje cell morphology due to interactions with astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haydon, P.G.: GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001). doi:10.1038/35058528

    Article  Google Scholar 

  2. Araque, A., Carmignoto, G., Haydon, P.G.: Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813 (2001). doi:10.1146/annurev.physiol.63.1.795

    Article  Google Scholar 

  3. Volterra, A., Magistretti, P.J., Haydon, P.G.: The Tripartite Synapse Glia in Synaptic Transmission. Oxford University Press, New York (2002)

    Google Scholar 

  4. Ullian, E.M., Christopherson, K.S., Barres, B.A.: Role for glia in synaptogenesis. Glia 47, 209–216 (2004). doi:10.1002/glia.20082

    Article  Google Scholar 

  5. Kandel, E.R., Schwartz, J.H., Jessel, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  6. Zhang, J.M., Wang, H.K., Ye, C.Q., Ge, W., Chen, Y., Jiang, Z.L., Wu, C.P., Poo, M.M., Duan, S.: ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003). doi:10.1016/S0896-6273(03)00717-7

    Article  Google Scholar 

  7. Liesi, P., Dahl, D., Vaheri, A.: Laminin is produced by early rat astrocytes in primary culture. J. Cell Biol. 96, 920–924 (1983). doi:10.1083/jcb.96.3.920

    Article  Google Scholar 

  8. Althaus, H.H., Richter-Landsberg, C.: Glial cells as targets and producers of neurotrophins. Int. Rev. Cytol. 197, 203–277 (2000). doi:10.1016/S0074-7696(00)97005-0

    Article  Google Scholar 

  9. Muller, C.M., Akhavan, A.C., Bette, M.: Possible role of S-100 in glia-neuronal signalling involved in activity-dependent plasticity in the developing mammalian cortex. J. Chem. Neuroanat. 6, 215–227 (1993). doi:10.1016/0891-0618(93)90043-4

    Article  Google Scholar 

  10. Donato, R.: S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33, 637–668 (2001). doi:10.1016/S1357-2725(01)00046-2

    Article  Google Scholar 

  11. Blondel, O., Collin, C., McCarran, W.J., Zhu, S., Zamostiano, R., Gozes, I., Brenneman, D.E., McKay, R.D.: A glia-derived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020 (2000)

    Google Scholar 

  12. Uylings, H.B.M., van Pelt, J.: Measures for quantifying dendritic arborizations. Network Comput. Neural Syst. 13, 397–414 (2002). doi:10.1088/0954-898X/13/3/309

    Article  Google Scholar 

  13. Seil, F.J.: Interactions between cerebellar Purkinje cells and their associated astrocytes. Histol. Histopathol. 16, 955–968 (2001)

    Google Scholar 

  14. Yuasa, S., Kawamura, K., Kuwano, R., Ono, K.: Neuron–glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int. J. Dev. Neurosci. 14(4), 429–438 (1996). doi:10.1016/0736-5748(96)00021-4

    Article  Google Scholar 

  15. Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W., Pardo, C.A.: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005). doi:10.1002/ana.20315

    Article  Google Scholar 

  16. Bauman, M.L., Kemper, T.L.: Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Dev. Neurosci. 23, 183–187 (2005). doi:10.1016/j.ijdevneu.2004.09.006

    Article  Google Scholar 

  17. Fatemi, S.H., Halt, A.R., Realmuto, G., Earle, J., Kist, D.A., Thuras, P., Merz, A.: Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurobiol. 22(2), 171–175 (2002)

    Article  Google Scholar 

  18. Kern, J.K.: Purkinje cell vulnerability and autism: a possible etiological connection. Brain Develop. 25, 377–382 (2003). doi:10.1016/S0387-7604(03)00056-1

    Article  Google Scholar 

  19. Niell, C.M., Smith, S.J.: Live optical imaging of nervous system development. Annu. Rev. Physiol. 66, 771–798 (2004). doi:10.1146/annurev.physiol.66.082602.095217

    Article  Google Scholar 

  20. Silva, G.A., Culp, B.: High throughput algorithms for mapping the topology of neuronal and glial networks. In: Proceedings of the 2nd International IEEE EMBS Conference of Neural Engineering v-viii (2005)

  21. Blinder, P., Baruchi, I., Volman, V., Levine, H., Baranes, D., Ben-Jacob, E.: Functional topology classification of biological computing networks. Nat. Comput. 4, 339–361 (2005). doi:10.1007/s11047-005-3667-6

    Article  MATH  MathSciNet  Google Scholar 

  22. Arai, Y., Momose-Sato, Y., Sato, K., Kamino, K.: Optical mapping of neural network activity in chick spinal cord intermediate stage embryonic development. J. Neurophysiol. 81, 1889–1902 (1999)

    Google Scholar 

  23. Furuya, S., Makino, A., Hirabayashi, Y.: An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res. Protoc. 3, 192–198 (1998)

    Article  Google Scholar 

  24. Tabata, T., Sawadaa, S., Arakia, K., Bonoa, Y., Furuya, S., Kano, M.: A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. J. Neurosci. Methods 104, 45–53 (2000). doi:10.1016/S0165-0270(00)00323-X

    Article  Google Scholar 

  25. McAuliffe, M.J., Lalonde, F.M., McGarry, D., Gandler, W., Csaky, K. Trus, B.L.: Medical image processing, analysis & visualization in clinical research. In: IEEE Symposium on Computer-Based Medical Systems (CBMS), pp. 381–386 (2001)

  26. Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image Processing with ImageJ. Biophotonics International, 11(7), 36–42 (2004)

    Google Scholar 

  27. Uylings, H.B., van Pelt, J.: Measures for quantifying dendritic arborizations. Network 13, 397–414 (2002)

    Article  Google Scholar 

  28. Shefi, O., Golebowicz, S., Ben-Jacob, E., Ayali, A.: A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles. J. Neurobiol. 62(3), 361–368 (2004)

    Article  Google Scholar 

  29. Sholl, D.A.: Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87, 387–406 (1953)

    ADS  Google Scholar 

  30. Milośević, N.T., Ristanović, D.: The Sholl analysis of neuronal cell images: semi-log or log–log method? J. Theor. Biol. 345(1), 130–140 (2007). doi:10.1016/j.jtbi.2006.09.022

    Google Scholar 

  31. Caserta, F., Eldred, W.D., Fernández, E., Hausman, R.E., Stanford, L.R., Bulderev, S.V., Schwarzer, S., Stanley, H.E.: Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J. Neurosci. Methods 56, 133–144 (1995). doi:10.1016/0165-0270(94)00115-W

    Article  Google Scholar 

  32. Jelinek, J.F., Fernández, E.: Neurons and fractals: how reliable and useful are calculations of fractal dimensions? J. Neurosci. Methods 81, 9–18 (1998). doi:10.1016/S0165-0270(98)00021-1

    Article  Google Scholar 

  33. Alves, S.G., Martin, M.L., Fernandes, P.A., Pittella, J.E.H.: Fractal patterns for dendrites and axon terminals. Physica A 232, 51–60 (1996). doi:10.1016/0378-4371(96)00139-2

    Article  ADS  Google Scholar 

  34. Takeda, T., Ishikawa, A., Ohtomo, K., Kobayashi, Y., Matsuoka, T.: Fractal dimension of dendritic tree of cerebellar Purkinje cell during onto- and phylogenetic development. Neurosci. Res. 13, 19–31 (1992). doi:10.1016/0168-0102(92)90031-7

    Article  Google Scholar 

  35. Milošević, N.T., Ristanović, D., Stanković, J.B.: Fractal analysis of the laminar organization of spinal cord. J. Neurosci. Methods 146, 198–204 (2005). doi:10.1016/j.jneumeth.2005.02.009

    Article  Google Scholar 

  36. Milošević, N.T., Ristanović, D.: Fractality of dendritic arborization of spinal cord neurons. Neurosci. Lett. 396, 172–176 (2006). doi:10.1016/j.neulet.2005.11.031

    Article  Google Scholar 

  37. Fernández, E., Jelinek, H.F.: Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24, 309–321 (2001)

    Article  Google Scholar 

  38. Mandelbrot, B.B.: The Fractal Geometry of Nature, 20th edn. Freeman, New York (2004)

    Google Scholar 

  39. Cohen, J., Wilkin, G.P.: Neural Cell Culture. A Practical Approach. Oxford University Press, Oxford (1995)

    Google Scholar 

  40. Panico, J., Sterling, P.: Retinal neurons and vessels are not fractal but spacefilling. J. Comp. Neurol. 361, 479–490 (1995). doi:10.1002/cne.903610311

    Article  Google Scholar 

  41. Fernández, E., Guiloff, G., Kolb, H., Ammermüller, D., Zhang, D., Eldred, W.: Fractal dimension as a useful parameter for morphological classification of retinal neurons. Invest. Ophthalmol. Vis. Sci. 33, 940 (1992)

    Google Scholar 

  42. Marchetti, B.: Cross-talk signals in the CNS: role of neurotrophic and hormonal factors, adhesion molecules and intercellular signaling agents in luteinizing hormone-releasing hormone (LHRH)-astroglial interactive network. Front. Biosci. 2, 88–125 (1997)

    Google Scholar 

  43. Rosenberg, S.S., Felland, E.E., Tokar, E., De La Torre, A.R., Chan, J.R.: The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc. Natl. Acad. Sci. U.S.A. 105(38), 14662–14667 (2008). doi:10.1073/pnas.0805640105

    Article  ADS  Google Scholar 

  44. Murray, C.D.: The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9, 835–841 (1926). doi:10.1085/jgp.9.6.835

    Article  Google Scholar 

  45. Chklovskii, D.B.: Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43, 609–617 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Billeci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billeci, L., Pioggia, G., Vaglini, F. et al. Assessment and comparison of neural morphology through metrical feature extraction and analysis in neuron and neuron–glia cultures. J Biol Phys 35, 447–464 (2009). https://doi.org/10.1007/s10867-009-9150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9150-3

Keywords

Navigation