Skip to main content
Log in

Can We Model DNA at the Mesoscale?

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Modelling DNA is useful for understanding its properties better but it is also challenging because many of these properties involve hundreds of base pairs or more, or time scales which are much longer than the time scales accessible to molecular dynamics. It is therefore necessary to develop models at a mesoscale, which include enough details to describe the properties of interest, for instance the biological sequence, while staying sufficiently simple and realistic.

We discuss here two examples: a dynamical model to study the mechanical denaturation of DNA, which probes the sequence on various scales, and a model for the self assembly of DNA which describes the formation of hairpins and allows us to study its kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Lavery, R.: Modelling the DNA Double Helix: Techniques and Results, in M. Peyrard (ed.), Nonlinear Exciations in Biomolecules, Editions de Physique/Springer-Verlag, Les Ulis, 1995.

  • Choi, C.H., Kalosakas, G., Rasmussen, K.O., Hiromura, M., Bishop, A.R. and Usheva, A.: DNA Dynamically Directs Its Own Transcription Initiation, Nucleic Acid Research 32 (2004), 1584–1590.

    Google Scholar 

  • Essevaz-Roulet, B., Bockelmann, U. and Heslot, F.: Mechanical Separation of the Complementary Strands of DNA, Proc. Natl. Acad. Sci. USA 94 (1997), 11935–11940.

    Article  ADS  Google Scholar 

  • Danilowicz, C., Coljee, V.W., Bouzigues, C., Lubensky, D.K., Nelson, D.R. and Prentiss, M.: DNA Unzipped under a Constant Force Exhibits Multiple Metastable Intermediates, PNAS 100 (2003), 1694–1699.

    Article  ADS  Google Scholar 

  • Bonnet, G., Krichevsky, O. and Libchaber, A.: Kinetics of Conformational Fluctuations in DNA Hairpin-Loops, Proc. Natl. Acad. Sci. USA 95 (1998), 8602–8606.

    Article  ADS  Google Scholar 

  • Viovy, J.-L., Heller, C., Caron, F., Cluzel, P. and Chatenay, D.: Séquençage de l'ADN par ouverure mécanique de la double hélice: une évaluation théorique, C.R. Acad. Sci. Paris, Sciences de la Vie/Life sciences 317 (1994), 795–800.

    Google Scholar 

  • Peyrard, M.: Using DNA to Probe Nonlinear Localised Excitations? Europhys. Lett. 44 (1998), 271–277.

    Article  ADS  Google Scholar 

  • Lubensky, D.K. and Nelson, D.R.: Single Molecule Statistics and the Polynucleotide Unzipping Transition, Phys. Rev. E 65 (2002), 031917-1-25.

    Google Scholar 

  • Essevaz-Roulet, B., Bockelmann, U. and Heslot, F.: Mechanical Separation of the Complementary Strands of DNA, Proc. Natl. Acad. Sci. USA 94 (1997), 11935–11940.

    Article  ADS  Google Scholar 

  • Wartell, R.M. and Benight, A.S.: Thermal Denaturation of DNA Molecules: A Comparison of Theory with Experiments, Physics Reports 126 (1985), 67.

    Google Scholar 

  • Peyrard, M. and Bishop, A.R.: Statistical Mechanics of a Nonlinear Model for DNA Denaturation, Physical Review Letters 62 (1989), 2755–2758.

    Article  ADS  Google Scholar 

  • Dauxois, T., Peyrard, M. and Bishop, A.R.: Entropy Driven DNA Denaturation, Physical Review E 47 (1993), R44–R47.

    Article  ADS  Google Scholar 

  • Campa, A. and Giansanti, A.: Experimental Tests of the Peyrard-Bishop Model Applied to the Melting of Very Short DNA Chains, Phys. Rev. E 58 (1998), 3585–3588.

    Article  ADS  Google Scholar 

  • Dauxois, T., Theodorakopoulos, N. and Peyrard, M.: Thermodynamic Instabilities in One Dimension: Correlations, Scaling and Solitons, J. Stat. Phys. 107 (2002), 869–891.

    Article  Google Scholar 

  • Theodorakopoulos, N., Dauxois, T. and Peyrard, M.: Order of the Phase Transition in Models of DNA Thermal Denaturation, Phys. Rev. Lett. 85 (2000), 6–9.

    Article  ADS  Google Scholar 

  • Martyna, G.J., Klein, M.L. and Tuckerman, M.: Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics, J. Chem. Phys. 97 (1992), 2635–2643.

    Article  ADS  Google Scholar 

  • Cuesta-Lopez, S. and Peyrard, M. unpublished.

  • Theodorakopoulos, N. Peyrard, M. and MacKay, R.S.: Nonlinear Structures and Thermodynamic Instabilities in a One-Dimensional Lattice System, Phys. Rev. Lett. 93 (2004), 258101-1-4.

    Google Scholar 

  • Cuenda, S. and Sanchez, A.: Nonlinear Excitations in DNA: Aperiodic Models Versus Actual Genome Sequences, Phys. Rev. E 70 (2004), 051903-1-8.

    Google Scholar 

  • Landau, D.P. and Binder, K.: Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 2000.

  • Goddard, N.L., Bonnet, G., Krichevsky, O. and Libchaber, A.: Sequence Dependence Rigidity of Single-Stranded DNA, Phys. Rev. Lett. 85 (2000), 2400–2403.

    Article  ADS  Google Scholar 

  • Cuesta-López, S., Peyrard, M. and Graham, D.J.: Model for DNA Hairpin Denaturation, Eur. Phys. J. E. (to be published).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peyrard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuesta-López, S., Errami, J., Falo, F. et al. Can We Model DNA at the Mesoscale?. J Biol Phys 31, 273–301 (2005). https://doi.org/10.1007/s10867-005-3244-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-3244-3

Keywords

Navigation