Skip to main content

Advertisement

Log in

NMR characterization of HtpG, the E. coli Hsp90, using sparse labeling with 13C-methyl alanine

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A strategy for acquiring structural information from sparsely isotopically labeled large proteins is illustrated with an application to the E. coli heat-shock protein, HtpG (high temperature protein G), a 145 kDa dimer. It uses 13C-alanine methyl labeling in a perdeuterated background to take advantage of the sensitivity and resolution of Methyl-TROSY spectra, as well as the backbone-centered structural information from 1H–13C residual dipolar couplings (RDCs) of alanine methyl groups. In all, 40 of the 47 expected crosspeaks were resolved and 36 gave RDC data. Assignments of crosspeaks were partially achieved by transferring assignments from those made on individual domains using triple resonance methods. However, these were incomplete and in many cases the transfer was ambiguous. A genetic algorithm search for consistency between predictions based on domain structures and measurements for chemical shifts and RDCs allowed 60% of the 40 resolved crosspeaks to be assigned with confidence. Chemical shift changes of these crosspeaks on adding an ATP analog to the apo-protein are shown to be consistent with structural changes expected on comparing previous crystal structures for apo- and complex- structures. RDCs collected on the assigned alanine methyl peaks are used to generate a new solution model for the apo-protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acton TB et al (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. In: Kuo LC (ed) Fragment-based drug design: tools, practical approaches, and examples, vol 493. Methods in enzymology. Academic Press, Amsterdam, pp 21–60. doi:10.1016/b978-0-12-381274-2.00002-9

  • Ali MMU et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017. doi:10.1038/nature04716

    Article  ADS  Google Scholar 

  • Allegrozzi M, Bertini I, Janik MBL, Lee YM, Lin GH, Luchinat C (2000) Lanthanide induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161

    Article  Google Scholar 

  • Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119. doi:10.1007/s10858-008-9294-7

    Article  Google Scholar 

  • Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J (2012) An optimized isotopic labelling strategy of isoleucine-gamma(2) methyl groups for solution NMR studies of high molecular weight proteins. Chem Commun 48:1434–1436. doi:10.1039/c1cc12932e

    Article  Google Scholar 

  • Bahrami A, Assadi A, Markley JL, Eghbalnia H (2009) Probablilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectrscopy. PLoS Comput Biol 5:e1000307

    Article  ADS  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. BioChemistry 39:5355–5365

    Article  Google Scholar 

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16. doi:10.1110/ps.0233303

    Article  Google Scholar 

  • Burmann BM, Hiller S (2015) Chaperones and chaperone-substrate complexes: dynamic playgrounds for NMR spectroscopists. Prog Nucl Magn Reson Spectrosc 86–87:41–64. doi:10.1016/j.pnmrs.2015.02.004

    Article  Google Scholar 

  • Clore GM (2011) Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Sci 20:229–246

    Article  Google Scholar 

  • Day JEH et al (2011) Targeting the Hsp90 molecular chaperone with novel macrolactams. Synthesis, structural, binding, and cellular studies. Acs Chem Biol 6:1339–1347 doi:10.1021/cb200196e

    Article  Google Scholar 

  • Didenko T, Duarte AMS, Karagoz GE, Rudiger SGD (2012) Hsp90 structure and function studied by NMR spectroscopy. Biochim Biophys Acta 1823:636–647. doi:10.1016/j.bbamcr.2011.11.009

    Article  Google Scholar 

  • Dollins DE, Warren JJ, Immormino RM, Gewirth DT (2007) Structures of Grp94-nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Mol Cell 28:41–56. doi:10.1016/j.molcel.2007.08.024

    Article  Google Scholar 

  • Gao Q et al (2016) Structural aspects of heparan sulfate binding to Robo1-Ig1-2. ACS Chem Biol 11:3106–3113

    Article  Google Scholar 

  • Gao Q, Chalmers GR, Moremen KM, Prestegard JH (2017) NMR assignments of sparsely labeled proteins using a genetic algorithm. J Biomol NMR 67:283–294. doi:10.1007/s10858-017-0101-1

    Article  Google Scholar 

  • Godoy-Ruiz R, Guo CY, Tugarinov V (2010) Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J Am Chem Soc 132:18340–18350. doi:10.1021/ja1083656

    Article  Google Scholar 

  • Harris SF, Shiau AK (2004) The crystal structure of the carboxy-terminal dimerization domain of HtpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12:1087–1097

    Article  Google Scholar 

  • Hennig J, Sattler M (2014) The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 23:669–682. doi:10.1002/pro.2467

    Article  Google Scholar 

  • Hogben HJ, Krzystyniak M, Charnock GTP, Hore PJ, Kuprov I (2011) Spinach—a software library for simulation of spin dynamics in large spin systems. J Magn Reson 208:179–194. doi:10.1016/j.jmr.2010.11.008

    Article  ADS  Google Scholar 

  • Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428-+ doi:10.1021/ja0761784

    Google Scholar 

  • Jackson SE (2013) Hsp90: structure and function. In: Jackson S (ed) Molecular chaperones, vol 328. Topics in current chemistry. Springer, Berlin, pp 155–240. doi:10.1007/128_2012_356

  • Jansson M, Li YC, Jendeberg L, Anderson S, Montelione GT, Nilsson B (1996) High-level production of uniformly N-15- and C-13-enriched fusion proteins in Escherichia coli. J Biomol NMR 7:131–141

    Article  Google Scholar 

  • Karagoz GE et al (2011) N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci USA 108:580–585. doi:10.1073/pnas.1011867108

    Article  ADS  Google Scholar 

  • Karagoz GE et al (2014) Hsp90-tau complex reveals molecular basis for specificity in chaperone action. Cell 156:963–974. doi:10.1016/j.cell.2014.01.037

    Article  Google Scholar 

  • Kay LE, Gardner KH (1997) Solution NMR spectroscopy beyond 25 kda. Curr Opin Struct Biol 7:722–731. doi:10.1016/s0959-440x(97)80084-x

    Article  Google Scholar 

  • Krukenberg KA, Forster F, Rice LM, Sali A, Agard DA (2008) Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16:755–765. doi:10.1016/j.str.2008.01.021

    Article  Google Scholar 

  • Krukenberg KA, Bottcher UMK, Southworth DR, Agard DA (2009) Grp94, the endoplasmic reticulum Hsp90, has a similar solution conformation to cytosolic Hsp90 in the absence of nucleotide. Protein Sci 18:1815–1827. doi:10.1002/pro.191

    Article  Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255. doi:10.1017/s0033583510000314

    Article  Google Scholar 

  • Lavery LA, Partridge JR, Ramelot TA, Elnatan D, Kennedy MA, Agard DA (2014) Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol Cell 53:330–343. doi:10.1016/j.molcel.2013.12.023

    Article  Google Scholar 

  • Li D, Brüschweiler R (2015) PPM_One: a static protein structure based chemical shift predictor. J Biomol NMR 62:403–409

    Article  Google Scholar 

  • Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413

    Article  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  Google Scholar 

  • Nietlispach D et al (1996) An approach to the structure determination of larger proteins using triple resonance NMR experiments in conjunction with random fractional deuteration. J Am Chem Soc 118:407–415. doi:10.1021/ja952207b

    Article  Google Scholar 

  • Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852. doi:10.1002/mrc.1256

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  Google Scholar 

  • Prestegard JH, Al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33:371–424. doi:10.1017/s0033583500003656

    Article  Google Scholar 

  • Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540. doi:10.1021/cr030419i

    Article  Google Scholar 

  • Retzlaff M et al (2010) Asymmetric activation of the Hsp90 dimer by its cochaperone aha1. Mol Cell 37:344–354. doi:10.1016/j.molcel.2010.01.006

    Article  Google Scholar 

  • Rosenzweig R, Kay LE (2014) Bringing dynamic molecular machines into focus by methyl-trosy NMR. Annu Rev Biochem 83:291–315. doi:10.1146/annurev-biochem-060713-035829

    Article  Google Scholar 

  • Rosenzweig R, Kay LE (2016) Solution NMR spectroscopy provides an avenue for the study of functionally dynamic molecular machines: the example of protein disaggregation. J Am Chem Soc 138:1466–1477. doi:10.1021/jacs.5b11346

    Article  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  Google Scholar 

  • Schmitz C, Vernon R, Otting G, Baker D, Huber T (2012) Protein structure determination from pseudocontact shifts using rosetta. J Mol Biol 416:668–677

    Article  Google Scholar 

  • Schulze A, Beliu G, Helmerich DA, Schubert J, Pearl LH, Prodromou C, Neuweiler H (2016) Cooperation of local motions in the Hsp90 molecular chaperone atpase mechanism. Nat Chem Biol 12:628–635. doi:10.1038/nchembio.2111

    Article  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR, Agard DA (2006a) Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340. doi:10.1016/j.cell.2006.09.027

    Article  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR, Agard DA (2006b) Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340

    Article  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. doi:10.1038/msb.2011.75

    Google Scholar 

  • Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone atpase cycle. Mol Cell 32:631–640. doi:10.1016/j.molcel.2008.10.024

    Article  Google Scholar 

  • Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-em structure of the human Hsp90:Hop complex. Mol Cell 42:771–781. doi:10.1016/j.molcel.2011.04.023

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512

    Article  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2004) Evolutionary origins of Hsp90 chaperones and a deep paralogy in their bacterial ancestors. J Eukaryot Microbiol 51:364–373

    Article  Google Scholar 

  • Street TO, Lavery LA, Verba KA, Lee CT, Mayer MP, Agard DA (2012) Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity. J Mol Biol 415:3–15. doi:10.1016/j.jmb.2011.10.038

    Article  Google Scholar 

  • Tjandra N, Bax A (1997) Measurement of dipolar contributions to 1JCH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124:512–515. doi:10.1006/jmre.1996.1088

    Article  ADS  Google Scholar 

  • Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878. doi:10.1021/ja030345s

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced H-1-C-13 NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. doi:10.1021/ja030153x

    Article  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754. doi:10.1038/nprot.2006.101

    Article  Google Scholar 

  • Valafar H, Prestegard JH (2004) Redcat: a residual dipolar coupling analysis tool. J Magn Reson 167:228–241. doi:10.1016/j.jmr.2003.12.012

    Article  ADS  Google Scholar 

  • Verba KA, Wang RYR, Arakawa A, Liu YX, Shirouzu M, Yokoyama S, Agard DA (2016) Structural biology atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547. doi:10.1126/science.aaf5023

    Article  ADS  Google Scholar 

  • Xiao R et al (2010) The high-throughput protein sample production platform of the northeast structural genomics consortium. J Struct Biol 172:21–33. doi:10.1016/j.jsb.2010.07.011

    Article  Google Scholar 

  • Yagi H, Pilla KB, Maleckis A, Graham B, Huber T, Otting G (2013) Three dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites. Structure 21:883–890

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Institute of General Medical Sciences (NIGMS Protein Structure Initiative grant U54GM094597 (GTM), biotechnology resource Grant P41GM103390 and Grant R01GM033225 (JHP)) and from the HHMI (DAA). Molecular graphics and structural analyses were performed with the UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311). Manuscript content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Prestegard.

Additional information

Kari Pederson and Gordon R. Chalmers have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pederson, K., Chalmers, G.R., Gao, Q. et al. NMR characterization of HtpG, the E. coli Hsp90, using sparse labeling with 13C-methyl alanine. J Biomol NMR 68, 225–236 (2017). https://doi.org/10.1007/s10858-017-0123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0123-8

Keywords

Navigation