Skip to main content
Log in

Improved validation of IDP ensembles by one-bond Cα–Hα scalar couplings

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Intrinsically disordered proteins (IDPs) are best described by ensembles of conformations and a variety of approaches have been developed to determine IDP ensembles. Because of the large number of conformations, however, cross-validation of the determined ensembles by independent experimental data is crucial. The 1JCαHα coupling constant is particularly suited for cross-validation, because it has a large magnitude and mostly depends on the often less accessible dihedral angle ψ. Here, we reinvestigated the connection between 1JCαHα values and protein backbone dihedral angles. We show that accurate amino-acid specific random coil values of the 1JCαHα coupling constant, in combination with a reparameterized empirical Karplus-type equation, allow for reliable cross-validation of molecular ensembles of IDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131:18314–18326. doi:10.1021/Ja904716h

    Article  Google Scholar 

  • Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T (2011) Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides. Biochemistry 50:7612–7628. doi:10.1021/bi200732x

    Article  Google Scholar 

  • Barfield M, Johnston MD (1973) Solvent dependence of nuclear spin–spin coupling-constants. Chem Rev 73:53–73. doi:10.1021/Cr60281a004

    Article  Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664. doi:10.1021/ja069124n

    Article  Google Scholar 

  • Billeter M, Neri D, Otting G, Qian YQ, Wuthrich K (1992) Precise vicinal coupling constants 3JHN α in proteins from nonlinear fits of J-modulated [15N, 1H]-COSY experiments. J Biomol NMR 2:257–274

    Article  Google Scholar 

  • Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) Calmodulin structure refined at 1.7 A resolution. J Mol Biol 228:1177–1192

    Article  Google Scholar 

  • Choy WY, Forman-Kay JD (2001) Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J Mol Biol 308:1011–1032. doi:10.1006/jmbi.2001.4750

    Article  Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    Article  Google Scholar 

  • Edison AS, Markley JL, Weinhold F (1994a) Calculations of one-, two- and three-bond nuclear spin–spin couplings in a model peptide and correlations with experimental data. J Biomol NMR 4:519–542

    Article  Google Scholar 

  • Edison AS, Weinhold F, Westler WM, Markley JL (1994b) Estimates of phi and psi torsion angles in proteins from one-, two- and three-bond nuclear spin–spin couplings: application to staphylococcal nuclease. J Biomol NMR 4:543–551

    Article  Google Scholar 

  • Egli H, Vonphilipsborn W (1981) C-13-Nmr Spectroscopy.29. Conformational dependence of one-bond C-α, H spin coupling in cyclic-peptides. Helv Chim Acta 64:976–988. doi:10.1002/hlca.19810640404

    Article  Google Scholar 

  • Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T (2008) Structure and dynamics of the Aβ(21–30) peptide from the interplay of NMR experiments and molecular simulations. J Am Chem Soc 130:6145–6158. doi:10.1021/ja710366c

    Article  Google Scholar 

  • Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431. doi:10.1016/j.sbi.2011.04.001

    Article  Google Scholar 

  • Hansen PE (1981) Carbon–hydrogen spin–spin coupling-constants. Prog Nucl Magn Reson Spectrosc 14:175–296. doi:10.1016/0079-6565(81)80001-5

    Article  Google Scholar 

  • Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  Google Scholar 

  • Jensen MR, Zweckstetter M, Huang JR, Blackledge M (2014) Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev 114:6632–6660. doi:10.1021/cr400688u

    Article  Google Scholar 

  • Kontaxis G, Clore GM, Bax A (2000) Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. J Magn Reson 143:184–196. doi:10.1006/jmre.1999.1979

    Article  ADS  Google Scholar 

  • Kopple KD, Ahsan A, Barfield M (1978) Regarding H–C–C(O)–15-N coupling as an indicator of peptide torsional angle. Tetrahedron Lett 3519–3522

  • Lin S, Fu XD (2007) SR proteins and related factors in alternative splicing. Adv Exp Med Biol 623:107–122

    Article  Google Scholar 

  • Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134:3787–3791. doi:10.1021/ja209931w

    Article  Google Scholar 

  • Mantsyzov AB, Maltsev AS, Ying J, Shen Y, Hummer G, Bax A (2014) A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein. Protein Sci 23:1275–1290. doi:10.1002/pro.2511

    Article  Google Scholar 

  • Marsh JA, Forman-Kay JD (2012) Ensemble modeling of protein disordered states: experimental restraint contributions and validation. Proteins 80:556–572. doi:10.1002/prot.23220

    Article  Google Scholar 

  • Marsh JA, Teichmann SA, Forman-Kay JD (2012) Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 22:643–650. doi:10.1016/j.sbi.2012.08.008

    Article  Google Scholar 

  • Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14. doi:10.1016/j.sbi.2007.01.009

    Article  Google Scholar 

  • Mittag T, Kay LE, Forman-Kay JD (2010) Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 23:105–116. doi:10.1002/jmr.961

    Google Scholar 

  • Mukrasch MD et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34

    Article  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584. doi:10.1146/annurev-biochem-072711-164947

    Article  Google Scholar 

  • Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105. doi:10.1016/j.sbi.2013.12.006

    Article  Google Scholar 

  • Rezaei-Ghaleh N, Blackledge M, Zweckstetter M (2012) Intrinsically disordered proteins: from sequence and conformational properties toward drug discovery. ChemBioChem 13:930–950. doi:10.1002/cbic.201200093

    Article  Google Scholar 

  • Schmidt JM, Howard MJ, Maestre-Martinez M, Perez CS, Lohr F (2009) Variation in protein C(α)-related one-bond J couplings. Magn Reson Chem 47:16–30. doi:10.1002/mrc.2337

    Article  Google Scholar 

  • Schwalbe M et al (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22:238–249. doi:10.1016/j.str.2013.10.020

    Article  Google Scholar 

  • Schwalbe M, Kadavath H, Biernat J, Ozenne V, Blackledge M, Mandelkow E, Zweckstetter M (2015) Structural impact of tau phosphorylation at threonine 231. Structure 23(8):1448–1458. doi:10.1016/j.str.2015.06.002

  • Tjandra N, Bax A (1997) Measurement of dipolar contributions to 1 J CH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124:512–515. doi:10.1006/jmre.1996.1088

    Article  ADS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  Google Scholar 

  • Uversky VN (2011) Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem Rev 111:1134–1166. doi:10.1021/cr100186d

    Article  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. doi:10.1146/annurev.biophys.37.032807.125924

    Article  Google Scholar 

  • Vijaykumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 a resolution. J Mol Biol 194:531–544. doi:10.1016/0022-2836(87)90679-6

    Article  Google Scholar 

  • Vuister GW, Bax A (1993) Quantitative J correlation—a new approach for measuring homonuclear 3-bond J(H(N)H(α) coupling-constants in N-15-enriched proteins. J Am Chem Soc 115:7772–7777

    Article  Google Scholar 

  • Vuister GW, Delaglio F, Bax A (1993) The use of 1JCαHα coupling constants as a probe for protein backbone conformation. J Biomol NMR 3:67–80

    Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure- function paradigm. J Mol Biol 293:321–331

    Article  Google Scholar 

  • Xiang S et al (2013) Phosphorylation drives a dynamic switch in serine/arginine-rich proteins. Structure 21:2162–2174. doi:10.1016/j.str.2013.09.014

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2001) Single-step determination of protein substructures using dipolar couplings: aid to structural genomics. J Am Chem Soc 123:9490–9491

    Article  Google Scholar 

Download references

Acknowledgments

We thank Eckhard Mandelkow and Jacek Biernat for the Tau sample. This work was in part supported by the DFG through ZW71/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zweckstetter.

Additional information

Vytautas Gapsys and Raghavendran L. Narayanan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapsys, V., Narayanan, R.L., Xiang, S. et al. Improved validation of IDP ensembles by one-bond Cα–Hα scalar couplings. J Biomol NMR 63, 299–307 (2015). https://doi.org/10.1007/s10858-015-9990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9990-z

Keywords

Navigation