Skip to main content
Log in

Site-specific labeling of proteins with NMR-active unnatural amino acids

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allegrozzi M, Bertini I, Janik MBL, Lee Y-M, Liu G et al (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 å from the metal ion. J Am Chem Soc 122(17):4154–4161

    Article  Google Scholar 

  • Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y et al (2004) The unusually stable quaternary structure of human Cu, Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J Biol Chem 279(46):47998–48003

    Article  Google Scholar 

  • Assfalg M, Banci L, Bertini I, Turano P, Vasos PR (2003) Superoxide dismutase folding/unfolding pathway: tole of the metal ions in modulating structural and dynamical features. J Mol Biol 330:145–158

    Article  Google Scholar 

  • Banci L, Bertini I, Cantini F, D’Amelio N, Gaggelli E (2006) Human SOD1 before harboring the catalytic metal: soltuion structure of copper-depleted, disulfide-reduced form. J Biol Chem 281(4):2333–2337

    Article  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18):5355–5365

    Article  Google Scholar 

  • Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions effects of electron spin relaxation. J Chem Phys 34(3):842–850

    Article  ADS  Google Scholar 

  • Breeze AL (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog NMR Spectrosc 36(4):323–372

    Article  Google Scholar 

  • Bromek K, Lee D, Hauhart R, Krych-Goldberg M, Atkinson JP et al (2005) Polychromatic selective population inversion for TROSY experiments with large proteins. J Am Chem Soc 127(1):405–411

    Article  Google Scholar 

  • Burz DS, Dutta K, Cowburn D, Shekhtman A (2006a) Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 3(2):91–93

    Article  Google Scholar 

  • Burz DS, Dutta K, Cowburn D, Shekhtman A (2006b) In-cell NMR for protein-protein interactions (STINT-NMR). Nat Protoc 1(1):146–152

    Article  Google Scholar 

  • Cellitti SE, Jones DH, Lagpacan L, Hao XS, Zhang Q et al (2008) In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc 130(29):9268–9281

    Article  Google Scholar 

  • Chen PR, Groff D, Guo J, Ou W, Cellitti S et al (2009) A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem Int Ed Engl 48:4052–4055

    Article  Google Scholar 

  • Clore GM, Starich MR, Bewley CA, Cai ML, Kuszewski J (1999) Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints. J Am Chem Soc 121(27):6513–6514

    Article  Google Scholar 

  • Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17(5):603–616

    Article  Google Scholar 

  • Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27(6):288–295

    Article  Google Scholar 

  • Constantine KL (2001) Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints. Biophys J 81(3):1275–1284

    Article  Google Scholar 

  • Danielson MA, Falke JJ (1996) Use of F-19 NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195

    Article  Google Scholar 

  • Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) FlgM gains structure in living cells. Proc Natl Acad Sci USA 99(20):12681–12684

    Article  ADS  Google Scholar 

  • Deiters A, Geierstanger BH, Schultz PG (2005) Site-specific in vivo labeling of proteins for NMR studies. ChemBioChem 6(1):55–58

    Article  Google Scholar 

  • Deiters A, Groff D, Ryu Y, Xie J, Schultz PG (2006) A genetically encoded photocaged tyrosine. Angew Chem Int Ed Engl 45:2728–2731

    Article  Google Scholar 

  • Ellman J, Volkman BF, Mendel D, Schultz PG, Wemmer DE (1992) Site-specific isotopic labeling of proteins for NMR studies. J Am Chem Soc 114(20):7959–7961

    Article  Google Scholar 

  • Fesik SW, Zuiderweg ERP (1988) Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J Magn Reson 78:588–593

    Google Scholar 

  • Fesik SW, Neri P, Meadows R, Olejniczak ET, Gemmecker G (1992) A model of the cyclophilin/cyclosporin A (CSA) complex from NMR and X-ray data suggests that CSA binds as a transition-state analog. J Am Chem Soc 114(8):3165–3166

    Article  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97

    Article  Google Scholar 

  • Frieden C, Hoeltzli SD, Bann JG (2004) The preparation of 19F-labeled proteins for NMR studies. Methods Enzymol 380:400–415

    Article  Google Scholar 

  • Gakh YG, Gakh AA, Gronenborn AM (2000) Fluorine as an NMR probe for structural studies of chemical and biological systems. Magn Reson Chem 38(7):551–558

    Article  Google Scholar 

  • Gaponenko V, Howarth JW, Columbus L, Gasmi-Seabrook G, Yuan J et al (2000) Protein global fold determination using site-directed spin and isotope labeling. Protein Sci 9:302–309

    Google Scholar 

  • Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J et al (2004) Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 28(3):205–212

    Article  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36(6):1389–1401

    Article  Google Scholar 

  • Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectroscopy 26(4):293–370

    Article  Google Scholar 

  • Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10(5):585–592

    Article  Google Scholar 

  • Groff D, Thielges MC, Cellitti S, Schultz PG, Romesberg FE (2009) Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine 100 in dihydrofolate reductase. Angew Chem Int Ed Engl 48:3478–3481

    Article  Google Scholar 

  • Gross JD, Gelev VM, Wagner G (2003) A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J Biomol NMR 25(3):235–242

    Article  Google Scholar 

  • Guo J, Wang J, Lee JS, Schultz PG (2008) Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angewandte Chemie International Ed Eng 47(34):6399–6401

    Article  Google Scholar 

  • Hammill JT, Miyake-Stoner S, Hazen JL, Jackson JC, Mehl RA (2007) Preparation of site-specifically labeled fluorinated proteins for F-19-NMR structural characterization. Nat Protoc 2(10):2601–2607

    Article  Google Scholar 

  • Hao B, Gong W, Ferguson TK, James CM, Krzycki JA et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase.[see comment]. Science 296(5572):1462–1466

    Article  ADS  Google Scholar 

  • Hubbard JA, MacLachlan LK, King GW, Jones JJ, Fosberry AP (2003) Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol Microbiol 49(5):1191–1200

    Article  Google Scholar 

  • Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B et al (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29(3):339–349

    Article  Google Scholar 

  • Inomata K, Ohno A, Tochio H, Isogai S, Tenno T et al (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458(7234):106–109

    Article  ADS  Google Scholar 

  • Jackson JC, Hammill JT, Mehl RA (2007) Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J Am Chem Soc 129(5):1160–1166

    Article  Google Scholar 

  • Jahnke W, Rudisser S, Zurini M (2001) Spin label enhanced NMR screening. J Am Chem Soc 123(13):3149–3150

    Article  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A et al (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57

    Article  ADS  Google Scholar 

  • Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129(30):9292–9293

    Article  Google Scholar 

  • Khaneja N, Li JS, Kehlet C, Luy B, Glaser SJ (2004) Broadband relaxation-optimized polarization transfer in magnetic resonance. Proc Natl Acad Sci USA 101(41):14742–14747

    Article  ADS  Google Scholar 

  • Kosen PA (1989) Spin labeling of proteins. Methods Enzymol 177:86–121

    Article  Google Scholar 

  • Lampe JN, Floor SN, Gross JD, Nishida CR, Jiang Y et al (2008) Ligand-induced conformational heterogeneity of cytochrome P450 CYP119 identified by 2D NMR spectroscopy with the unnatural amino acid (13)C-p-methoxyphenylalanine. J Am Chem Soc 130(48):16168–16169

    Article  Google Scholar 

  • Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39(29):8396–8405

    Article  Google Scholar 

  • Lee HS, Schultz PG (2008) Biosynthesis of a site-specific DNA cleaving protein. J Am Chem Soc 130(40):13194–13195

    Article  Google Scholar 

  • Lee HS, Spraggon G, Schultz PG, Wang F (2009) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J Am Chem Soc 131(7):2481–2483

    Article  Google Scholar 

  • Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG (2007) Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 3(12):769–772

    Article  Google Scholar 

  • Liang B, Bushweller JH, Tamm LK (2006) Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 128(13):4389–4397

    Article  Google Scholar 

  • Liu CC, Schultz PG (2006) Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat Biotechnol 24(11):1436–1440

    Article  Google Scholar 

  • Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4(3):239–244

    Article  MATH  Google Scholar 

  • Liu CC, Cellitti S, Geierstanger BH, Schultz PG (2009) Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded code. (submitted)

  • Luy B (2007) Approaching the megadalton: NMR spectroscopy of protein complexes. Angew Chem Int Ed Engl 46(23):4214–4216

    Article  Google Scholar 

  • Markley JL, Putter I, Jardetzk O (1968) High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161(3847):1249

    Article  ADS  Google Scholar 

  • McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J Mol Biol 355(5):893–897

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228

    Article  ADS  Google Scholar 

  • Morgan WD, Birdsall B, Polshakov VI, Sali D, Kompis I et al (1995) Solution structure of a brodimoprim analogue in its complex with Lactobacillus casei dihydrofolate reductase. Biochemistry 34(37):11690–11702

    Article  Google Scholar 

  • Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177:44–73

    Article  Google Scholar 

  • Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding Ne-acetyllysine in recombinant proteins. Nat Chem Biol epublished.

  • Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42(1):1–9

    Article  Google Scholar 

  • Pemble CW, Johnson LC, Kridel SJ, Lowther WT (2007) Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat. Nat Struct Mol Biol 14(8):704–709

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  ADS  Google Scholar 

  • Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE et al (2004) Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 126(9):2963–2970

    Article  Google Scholar 

  • Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96(9):4918–4923

    Article  ADS  Google Scholar 

  • Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T et al (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458(7234):102–105

    Article  ADS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

  • Schultz KC, Supekova L, Ryu YH, Xie JM, Perera R et al (2006) A genetically encoded infrared probe. J Am Chem Soc 128(43):13984–13985

    Article  Google Scholar 

  • Selenko P, Wagner G (2006) NMR mapping of protein interactions in living cells. Nat Methods 3(2):80–81

    Article  Google Scholar 

  • Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103(32):11904–11909

    Article  ADS  Google Scholar 

  • Serber Z, Ledwidge R, Miller SM, Dotsch V (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 123(37):8895–8901

    Article  Google Scholar 

  • Serber Z, Straub W, Corsini L, Nomura AM, Shimba N et al (2004) Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J Am Chem Soc 126(22):7119–7125

    Article  Google Scholar 

  • Serber Z, Corsini L, Durst F, Dotsch V (2005) In-cell NMR spectroscopy. Methods Enzymol 394:17–41

    Article  Google Scholar 

  • Serber Z, Selenko P, Hansel R, Reckel S, Lohr F et al (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1(6):2701–2709

    Article  Google Scholar 

  • Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462

    Article  ADS  Google Scholar 

  • Stockman BJ, Dalvit C (2002) NMR screening techniques in drug discovery and drug design. Prog NMR Spectrosc 41(3–4):187–231

    Article  Google Scholar 

  • Su XC, Man B, Beeren S, Liang H, Simonsen S et al (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130(32):10486–10487

    Article  Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc Natl Acad Sci USA 92(20):9279–9283

    Article  ADS  Google Scholar 

  • Tsao ML, Summerer D, Ryu YH, Schultz PG (2006) The genetic incorporation of a distance probe into proteins in Escherichia coli. J Am Chem Soc 128(14):4572–4573

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. ChemBioChem 6(9):1567–1577

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125(34):10420–10428

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  Google Scholar 

  • Veldkamp CT, Seibert C, Peterson FC, Sakmar TP, Volkman BF (2006) Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12). J Mol Biol 359(5):1400–1409

    Article  Google Scholar 

  • Veldkamp CT, Seibert C, Peterson FC, De La Cruz NB, Haugner JCIII et al (2008) Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1(37):ra4

    Article  Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500

    Article  ADS  Google Scholar 

  • Wang L, Xie J, Deniz AA, Schultz PG (2003) Unnatural amino acid mutagenesis of green fluorescent protein. J Org Chem 68(1):174–176

    Article  Google Scholar 

  • Wang JY, Xie JM, Schultz PG (2006a) A genetically encoded fluorescent amino acid. J Am Chem Soc 128(27):8738–8739

    Article  Google Scholar 

  • Wang L, Xie J, Schultz PG (2006b) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249

    Article  Google Scholar 

  • Wieruszeski JM, Bohin A, Bohin JP, Lippens G (2001) In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J Magn Reson 151(1):118–123

    Article  ADS  Google Scholar 

  • Wu N, Deiters A, Cropp TA, King D, Schultz PG (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126(44):14306–14307

    Article  Google Scholar 

  • Wüthrich K (1998) The second decade—into the third millennium. Nat Struct Biol 5(Suppl S):492–495

    Article  Google Scholar 

  • Xie J, Schultz PG (2005a) An expanding genetic code. Methods 36(3):227–238

    Article  Google Scholar 

  • Xie J, Schultz PG (2005b) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9(6):548–554

    Article  Google Scholar 

  • Xie J, Schultz PG (2006) A chemical toolkit for proteins–an expanded genetic code. Nat Rev Mol Cell Biol 7(10):775–782

    Article  Google Scholar 

  • Xie J, Wang L, Wu N, Brock A, Spraggon G et al (2004) The site-specific incorporation of p-iodo-l-phenylalanine into proteins for structure determination. Nat Biotechnol 22(10):1297–1301

    Article  Google Scholar 

  • Xie JM, Supekova L, Schultz PG (2007a) A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. Acs Chem Biol 2(7):474–478

    Article  Google Scholar 

  • Xie JM, Liu WS, Schultz PG (2007b) A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed Engl 46(48):9239–9242

    Article  Google Scholar 

  • Young TS, Ahmad I, Brock A, Schultz PG (2009) Expanding the genetic repertoire of the methylotrophic Yeast Pichia pastoris. Biochemistry 48(12):2643–2653

    Article  Google Scholar 

Download references

Acknowledgments

We thank Huiyong Hu for the synthesis of 15N-labeled o-NBTyr, and Hyun Soo Lee for samples of HQ-Ala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard H. Geierstanger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.H., Cellitti, S.E., Hao, X. et al. Site-specific labeling of proteins with NMR-active unnatural amino acids. J Biomol NMR 46, 89–100 (2010). https://doi.org/10.1007/s10858-009-9365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9365-4

Keywords

Navigation