Skip to main content

Advertisement

Log in

Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham A. (1961) The Principles of Nuclear Magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Akke M., Brüschweiler R. and Palmer A.G., III (1993a) J. Am. Chem. Soc. 115:9832–9833

    Article  Google Scholar 

  • Akke M., Skelton N.J., Kordel J., Palmer A.G., III and Chazin W.J. (1993b). Biochemistry 32:9832–9844

    Article  Google Scholar 

  • Atwell S., Ultsch M., De Vos A.M., Wells J.A. (1997). Science 278:1125–1128

    Article  ADS  Google Scholar 

  • Angulo J., Ojeda R., de Paz J.L., Lucas R., Nieto P.M., Lozano R.M., Redondo-Horcajo M., Giménez-Gallego G. and Martín-Lomas M. (2004). Chem. Bio. Chem. 5:55–61

    Google Scholar 

  • Arunkumar A.I., Srisailam S., Krishnaswamy T., Kumar S., Kathir K.M., Chi Y.-H., Wang H.-M., Chang G.-G., Chiu I.-M. and Yu C. (2002a). J. Biol. Chem. 277: 46424–46432

    Article  Google Scholar 

  • Arunkumar A.I., Kumar T.K., Kathir K.M., Srisailam S., Wang H.-M., Leena P.S., Chi Y.H., Chen H.C., Wu C.H., Wu R.T., Chang G.G., Chiu I.M. and Yu C. (2002b). Protein Sci. 11:1050–61

    Article  Google Scholar 

  • Capila I. and Lindhardt R.J. (2002). Angew. Chem. 114:428–451

    Article  Google Scholar 

  • Cavanagh J., Fairbrother W.J., Palmer A.G., III and Skelton N.J (1996). Protein NMR Spectroscopy: Principles and Practice. Academic Press, San Diego, CA

    Google Scholar 

  • Cavanagh J. and M. Akke (2000). Nat. Struct. Biol.7:11–3

    Article  Google Scholar 

  • Chi Y., Kumar K.S., Chiu I.-M. and Yu C. (2000). J. Biol. Chem. 275:39444–50

    Article  Google Scholar 

  • Chi Y.-H., Kumar T., Kathir K., Lin D.-H., Zhu G., Chiu I.- M and Yu C. (2002). Biochemistry 41:15350–15359

    Article  Google Scholar 

  • Clackson T. and Wells J.A. (1995). Science 267:383–386

    Article  ADS  Google Scholar 

  • Cobas J.C. and Sardina F.J. (2003). Concepts Magn. Reson. 19A:80–96

    Article  Google Scholar 

  • Conrad H.E. (1998) Heparin-Binding Proteins. Academic Press, San Diego

    Google Scholar 

  • DiGabriele A.D., Lax I., Chen D.I., Svahn C.M., Jaye M., Schlessinger J. and Hendrickson W.A. (1998). Nature 393: 812–817

    Article  ADS  Google Scholar 

  • Dosset P., Hus J.C., Blackledge M. and Marion D. (2000). J. Biomol. NMR 16:23–28

    Article  Google Scholar 

  • Dyson H.J. and Wright P.E. (2001). Methods Enzymol. 339:258–70

    Article  Google Scholar 

  • Epstein D.M., Benkovic S.J. and Wright P.E. (1995). Biochemistry 34:11037–48

    Article  Google Scholar 

  • Faham S., Hileman R.E., Fromm J.R., Lindhardt R.J. and Rees D.C. (1996). Science 271:1116–1120

    Article  ADS  Google Scholar 

  • Faham S., Lindhardt R.J. and Rees D.C. (1998) Curr. Opin Struct. Biol. 8:578–586

    Article  Google Scholar 

  • Farrow N.A., Muhandiram R., Singer A.U., Pascal S.M., Kay C.M., Gish G., Shoelson S.E., Pawson T., Forman-Kay J.D. and Kay L.E. (1994). Biochemistry 33:5984–6003

    Article  Google Scholar 

  • Farrow N.A., Zhang O., Szabo A., Torchia D.A. and Kay L.E. (1995). J. Biomol. NMR 6:153–62

    Article  Google Scholar 

  • Favier A., Brutscher B., Blackledge M., Galinier A., Deutscher J., Penin F. and Marion D. (2002). J. Mol. Biol. 317:131–44

    Article  Google Scholar 

  • Fayos R., Melacini G., Newlon M.G., Burns L., Scott J.D and Jennings P.A. (2003). J. Biol. Chem. 278:18581–7

    Article  Google Scholar 

  • Feher V.A. and Cavanagh J. (1999). Nature 400: 221–222

    Article  Google Scholar 

  • Forman-Kay J.D. (1999). Nat. Struct. Biol. 6:1086–1087

    Article  Google Scholar 

  • Giménez- Gallego G., Rodkey J., Bennett C., Rios-Candelore M., DiSalvo J. and Thomas K. (1985). Science 230:1385–1388

    Article  ADS  Google Scholar 

  • Giménez-Gallego G. and Cuevas P. (1994). Neurolog. Res. 16:313–316

    Article  Google Scholar 

  • Guignard L., Padilla A., Mispelter J., Yang Y.S., Stern M.H., Lhoste J.M. and Roumestand C. (2000). J. Biomol. NMR 17: 215–230

    Article  Google Scholar 

  • Harmer N.J., Pellegrini L., Chirgadze D., Fernández Recio J. and Blundell T.L. (2004a). Biochemistry 43:629–640

    Article  Google Scholar 

  • Harmer N.J., Ilag L.L., Mulloy B., Pellegrini L., Robinson C.V., and Blundell T.L. (2004b). J. Mol. Biol. 339:821–834

    Article  Google Scholar 

  • Hiyama Y., Niu C.-H., Silverton J.V., Bavoso A. and Torchia D.A. (1988). J. Am. Chem. Soc. 110:2378–2383

    Article  Google Scholar 

  • Itoh N. and Ornitz D.M. (2004). Trend. Gen. 20:563–569

    Article  Google Scholar 

  • Korzhnev D.M., Billeter M., Arseniev A.S. and Orekhov V.Y. (2001). Prog. Nucl. Magn. Reson. Spectrosc. 38:197–266

    Article  Google Scholar 

  • Krishnan V.V., Sukumar M., Gierasch L.M. and Cosman M (2000). Biochemistry 39:9119–9129

    Article  Google Scholar 

  • Lefèvre J.-F., Dayie K.T., Peng J.W. and Wagner G. (1996). Biochemistry 35:2674–2686

    Article  Google Scholar 

  • Lipari G. and Szabo A. (1982). J. Am. Chem. Soc. 104:4546–4570

    Article  Google Scholar 

  • McLachlan A.D. (1979). J. Mol. Biol. 133:557–563

    Article  Google Scholar 

  • Mohammadi M., Olsen S.K., and Goetez R. (2005a). Curr. Opin. Struct. Biol. 15:506–516

    Article  Google Scholar 

  • Mohammadi M., Olsen S.K. and Ibrahimi O.A. (2005b). Cytok. Growth. Fact. Rev. 16:107–137

    Article  Google Scholar 

  • Morton A. and Matthews B.W. (1995). Biochemistry 34:8576–8588

    Article  Google Scholar 

  • Moy F., Seddon A., Campell E., Bohlen P., and Powers R. (1995). J. Biomol. NMR 6:245–254

    Article  Google Scholar 

  • Nicholson L.K., Kay L.E., Baldisseri D.M., Arango J., Young P.E., Bax A. and Torchia D.A. (1992). Biochemistry 31:5253–63

    Article  Google Scholar 

  • Nishimura T., Nakatake Y., Konishi M. and Itoh N. (2000). Biochim. Biophys. Acta 1492:203–206

    Google Scholar 

  • Ogura K., Nagata K., Hatanaka H., Habuchi H., Kimata K., Tate S.-I., Ravera M., Jaye M., Schlessinger J. and Inagaki K. (1999). J. Biomol. NMR 13:11–24

    Article  Google Scholar 

  • Ornitz D., Yayon A., Flanagan J., Svahn C., Levi E. and Leder P. (1992). Mol. Cell. Biol. 12:240–247

    Google Scholar 

  • Ornitz. D.M., Xu J., Colvin J.S., Mc Ewen D.G., Mac Arthur C.A., Coulier F., Gao G. and Goldfarb M. (1996). J. Biol. Chem. 271:15292–15297

    Article  Google Scholar 

  • Osborne M.J., Schnell J., Benkovic S.J., Dyson H.J. and Wright P.E. (2001). Biochemistry 40:9846–59

    Article  Google Scholar 

  • Palmer A.G. (1993). Curr. Opin. Biotechnol. 4:385–391

    Article  MathSciNet  Google Scholar 

  • Pellegrini L., Burke D.F., von Delft F., Mulloy B. and Blundell T.L. (2000). Nature 407:1029–1034

    Article  ADS  Google Scholar 

  • Pellegrini L. (2001). Curr. Opin. Struct. Biol. 11:629–634

    Article  Google Scholar 

  • Peng J.W. and Wagner G. (1992a). J. Magn. Reson. 98:308–332

    Google Scholar 

  • Peng J.W. and Wagner G. (1992b). Biochemistry 31:8571–8586

    Article  Google Scholar 

  • Peränen J., Rikkonen M., Hyvönen M. and Kääriänien L. (1996). Anal. Biochem. 236:371–373

    Article  Google Scholar 

  • Pineda-Lucena A., Jiménez M.A., Nieto J.L., Santoro J., Rico M. and Giménez-Gallego G. (1994). J. Mol. Biol. 242:81–98

    Article  Google Scholar 

  • Pineda-Lucena A., Jiménez M.A., Lozano R.M., Nieto J.L., Santoro J., Rico M. and Giménez-Gallego G. (1996) J. Mol. Biol. 264:162–78

    Article  Google Scholar 

  • Powers C.J., Mc Leskey S.W. and Wellstein A. (2000). Endocr. Relat. Cancer 7:65–97

    Article  Google Scholar 

  • Rapraeger A., Krufka A. and Olwin B. (1991). Science 252:1705–1708

    Article  ADS  Google Scholar 

  • Schlessinger J., Plotnikov A.N., Ibrahimi O.A., Eliseenkova O.A., Yeh B.K., Yayon A., Lindhardt R.J. and Mohammadi M. (2000). Mol. Cell. 6:743–750

    Article  Google Scholar 

  • Slichter C. (1990) Principles of Magnetic Resonance. New York, Springer Verlag

    Google Scholar 

  • Spivak-Kroizman T., Lemmon M.A., Dikic I., Ladbury J.E., Pinchsi D., Huang J., Jaye M., Crumley G., Schlessinger J. and Lax I. (1994). Cell 79:1015–1024

    Article  Google Scholar 

  • Springer B.A., Pantoliano M.W., Barbera F.A., Gunyuzla P.L., Thompson L.D., Herblin W.F., Rosendeld S.A. and Book G.W. (1994). J. Biol. Chem. 269:26879–26884

    Google Scholar 

  • Stauber D.J., Digabriele A.D. and Hendrickson W.A. (2000). Proc. Natl. Acad. Sci. USA 97:49–54

    Article  ADS  Google Scholar 

  • Stivers J.T., Abeygunawardana C., Mildvan A.S. (1996). Biochemistry 35:16036–16047

    Article  Google Scholar 

  • Stone M.J., Gupta S. and Snyder N. (2001). J. Am. Chem. Soc. 123:185–186

    Article  Google Scholar 

  • Venkataraman G., Shriver Z., Davis J.C. and Sasisekharan R. (1999). Proc. Natl. Acad. Sci. USA 96:1892–1897

    Article  ADS  Google Scholar 

  • Waksman G. and Herr A.B. (1998). Nat. Struct. Biol. 5:527–530

    Article  Google Scholar 

  • White K.E., Evans W.E., O’Riordan J.L., Speer M.C., Econs M.J., Lorenz-Depiereux B., Grabowski M., Meitinger T., Strom T.M. (2000). Nat. Genet. 26:345–348

    Article  Google Scholar 

  • Wu Z.L., Zhang L., Yabe T., Kuberan B., Beeler D.L., Love A. and Rosenberg R.D. (2003). J. Biol. Chem. 278:17121–17129

    Article  Google Scholar 

  • Yayon A., Klagsbrun M., Esko J.D., Leder P. and Ornitz D.M (1991). Cell 64: 841–848

    Article  Google Scholar 

  • Zhang P., Dayie K.T. and Wagner G. (1997). J. Mol. Biol. 272:443–55

    Article  Google Scholar 

  • Zhu X., Hsu B.T. and Rees D.C. (1993). Structure 1:27–34

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Mercedes Zazo for her help during the expression and purification of labelled FGF-1. This work was supported by the Dirección General de Investigación Científica y Técnica (Grants BQU2000-1501-C02-01, BQU2002-0374, and BQU2003-03550-C03-01). We are indebted to Dr Dosset and Dr Guenneugues for kindly providing the programmes TENSOR2 and anal_roe, respectively. We also thank Comunidad de Madrid, Fundación Ramón Areces, and Fundación Francisco Cobos for fellowships to R.F., J.A., and R.O., respectively. NMR time from the Parc Cientific of Barcelona (Dr. M. Gairí), University of Santiago de Compostela, and CAI-NMR of Universidad Complutense is warmly thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Jiménez-Barbero.

Additional information

Angeles Canales-Mayordomo and Rosa Fayos have contributed equally to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canales-Mayordomo, A., Fayos, R., Angulo, J. et al. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods. J Biomol NMR 35, 225–239 (2006). https://doi.org/10.1007/s10858-006-9024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9024-y

Keywords

Navigation