Skip to main content

Advertisement

Log in

Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source

  • Special Issue: ESB 2017
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study validated the utilization of triacylglycerides (TAGs) by Pseudomonas mendocina CH50, a wild type strain, resulting in the production of novel mcl-PHAs with unique physical properties. A PHA yield of 58% dcw was obtained using 20 g/L of coconut oil. Chemical and structural characterisation confirmed that the mcl-PHA produced was a terpolymer comprising of three different repeating monomer units, 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-hydroxydodecanoate or P(3HO-3HD-3HDD). Bearing in mind the potential of P(3HO-3HD-3HDD) in biomedical research, especially in neural tissue engineering, in vitro biocompatibility studies were carried out using NG108-15 (neuronal) cells. Cell viability data confirmed that P(3HO-3HD-3HDD) supported the attachment and proliferation of NG108-15 and was therefore confirmed to be biocompatible in nature and suitable for neural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.

    Article  CAS  Google Scholar 

  2. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol. 2015;90:1209–21.

    Article  CAS  Google Scholar 

  3. Ali I, Jamil N. Polyhydroxyalkanoates: current applications in the medical field. Front Biol. 2016;11:19–27.

    Article  CAS  Google Scholar 

  4. Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, et al. Poly (3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials. 2010;31:2806–15.

    Article  CAS  Google Scholar 

  5. Rai R, Boccaccini AR, Knowles JC, Mordon N, Salih V, Locke IC, et al. The homopolymer poly (3‐hydroxyoctanoate) as a matrix material for soft tissue engineering. J Appl Polym Sci. 2011;122:3606–17.

    Article  CAS  Google Scholar 

  6. Basnett P, Ching K, Stolz M, Knowles JC, Boccaccini AR, Smith C, et al. Novel poly (3-hydroxyoctanoate)/poly (3-hydroxybutyrate) blends for medical applications. React Funct Polym. 2013;73:1340–8.

    Article  CAS  Google Scholar 

  7. Bagdadi AV, Safari M, Dubey P, Basnett P, Sofokleous P, Humphrey E, et al. Poly (3‐hydroxyoctanoate), a promising new material for cardiac tissue engineering. J Tissue Eng Regen Med. 2018;12:495–512.

    Article  Google Scholar 

  8. Rai R, Roether JA, Knowles JC, Mordan N, Salih V, Locke IC, et al. Highly elastomeric poly (3-hydroxyoctanoate) based natural polymer composite for enhanced keratinocyte regeneration. Int J Polym Mater Po. 2017;66:326–35.

    Article  CAS  Google Scholar 

  9. Basnett P, Lukasiewicz B, Marcello E, Gura HK, Knowles JC, Roy I. Production of a novel medium chain length poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microb Biotechnol. 2017;10:1384–99.

    Article  CAS  Google Scholar 

  10. Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–78.

    Article  CAS  Google Scholar 

  11. Chen GQ, Zhang J. Microbial polyhydroxyalkanoates as medical implant biomaterials. Artif Cells Nanomed Biotechnol. 2018;46:1–18.

    Article  CAS  Google Scholar 

  12. Ray S, Kalia V. Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol. 2017;57:261–9.

    Article  CAS  Google Scholar 

  13. Williams SF, Rizk S, Martin DP. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomed Tech. 2013;58:439–52.

    Article  CAS  Google Scholar 

  14. Lukasiewicz B, Basnett P, Nigmatullin R, Matharu R, Knowles J, Roy I. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater. 2018;71:225–34.

    Article  CAS  Google Scholar 

  15. Zhang J, Qian C, Shaowu L, Xiaoyun L, Yongxi Z, Ji-Song G, et al. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials. 2013;34:7552–62.

    Article  CAS  Google Scholar 

  16. Cao Q, Zhang J, Liu H, Wu Q, Chen J, Chen GQ. The mechanism of anti-osteoporosis effects of 3-hydroxybutyrate and derivatives under simulated microgravity. Biomaterials. 2014;35:8273–83.

    Article  CAS  Google Scholar 

  17. Xiao YQ, Zhao Y, Chen GQ. The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials. 2007;28:3608–361.

    Article  CAS  Google Scholar 

  18. Peng SW, Guo XY, Shang GG, Li J, Xu XY, You ML, et al. An assessment of the risks of carcinogenicity associated with poly(hydroxyalkanoates) through an analysis of DNA aneuploid and telomerase activity. Biomaterials. 2011;32:2546–55.

    Article  CAS  Google Scholar 

  19. Sun J, Dai Z, Zhao Y, Chen GQ. In vitro effect of oligohydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials. 2007;28:3896–903.

    Article  CAS  Google Scholar 

  20. Ciesielski S, Możejko J, Pisutpaisal N. Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod. 2015;106(Supplement C):408–21.

    Article  CAS  Google Scholar 

  21. Wong Y-M, Brigham CJ, Rha C, Sinskey AJ, Sudesh K. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol. 2012;121:320–7.

    Article  CAS  Google Scholar 

  22. López-Cuellar M, Alba-Flores J, Rodríguez JG, Pérez-Guevara F. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol. 2011;48:74–80.

    Article  Google Scholar 

  23. Basnett P, Knowles JC, Pishbin F, Smith C, Keshavarz T, Boccaccini AR. et al. Novel biodegradable and biocompatible poly (3-hydroxyoctanoate)/bacterial cellulose composites. Adv Eng Mater. 2012;14:B330–B343.

    Article  Google Scholar 

  24. Rai R, Keshavarz T, Roether J, Boccaccini AR, Roy I. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep. 2011;72:29–47.

    Article  Google Scholar 

  25. Weatherburn M. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39:971–4.

    Article  CAS  Google Scholar 

  26. Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Lam CMC, Schomburg D, et al. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single-and multiple-nutrient-limited growth: Highlights from a multi-level omics approach. Microb Cell Fact. 2012;11:34.

    Article  CAS  Google Scholar 

  27. Kim GJ, Lee IY, Yoon SC, Shin YC, Park YH. Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzym Microb Technol. 1997;20:500–5.

    Article  CAS  Google Scholar 

  28. Diniz SC, Taciro MK, Gomez JG, da Cruz Pradella JG. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Biotechnol Appl Biochem. 2004;119:51–70.

    Article  CAS  Google Scholar 

  29. Lee SY, Wong HH, Choi J, Lee SH, Lee SC, Han CS. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng. 2000;68:466–70.

    Article  CAS  Google Scholar 

  30. Ashby R, Foglia T. Poly (hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol. 1998;49:431–7.

    Article  CAS  Google Scholar 

  31. Solaiman D, Ashby R, Foglia T. Production of polyhydroxyalkanoates from intact triacylglycerols by genetically engineered Pseudomonas. Appl Microbiol Biotechnol. 2001;56:664–9.

    Article  CAS  Google Scholar 

  32. Appaiah P, Sunil L, Kumar PP, Krishna AG. Composition of coconut testa, coconut kernel and its oil. J Am Oil Chem Soc. 2014;91:917–24.

    Article  CAS  Google Scholar 

  33. Cromwick AM, Foglia T, Lenz R. The microbial production of poly (hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol. 1996;46:464–9.

    Article  CAS  Google Scholar 

  34. Eggink G, Waard Pd, Huijberts GN. Formation of novel poly (hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol. 1995;41:14–21.

    Article  CAS  Google Scholar 

  35. Song JH, Jeon CO, Choi MH, Yoon SC, Park W. 2008. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol. 2008;18:1408–15.

    CAS  Google Scholar 

  36. de Rijk TC, van de Meer P, Eggink G, Weusthuis RA. Methods for analysis of poly (3‐hydroxyalkanoate)(PHA) composition. In: Steinbüchel A, editor. Biopolymers Online: Biology, Chemistry, Biotechnology, Applications, Wiley-Blackwell; 2005, p. 1-12.

  37. Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001;53:5–21.

    Article  CAS  Google Scholar 

  38. Valappil SP, Misra SK, Boccaccini AR, Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. ‎Expert Rev Med Devices. 2006;3:853–68.

    Article  CAS  Google Scholar 

  39. Renard E, Vergnol G, Langlois V. Adhesion and proliferation of human bladder RT112 cells on functionalized polyesters. IRBM. 2011;32:214–20.

    Article  Google Scholar 

  40. Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001;7:55–71.

    Article  CAS  Google Scholar 

  41. Menzies KL, Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci. 2010;87:387–99.

    Google Scholar 

  42. Rechendorff K, Hovgaard MB, Foss M, Zhdanov V, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22:10885–8.

    Article  CAS  Google Scholar 

  43. Chung MG, Kim HW, Kim BR, Kim YB, Rhee YH. Biocompatibility and antimicrobial activity of poly (3-hydroxyoctanoate) grafted with vinylimidazole. Int J Biol Macromol. 2012;50:310–6.

    Article  CAS  Google Scholar 

  44. Shabna A, Saranya V, Malathi J, Shenbagarathai R, Madhavan H. Indigenously produced polyhydroxyalkanoate based co‐polymer as cellular supportive biomaterial. J Biomed Mater Res A. 2014;102:3470–6.

    Article  CAS  Google Scholar 

  45. Francis L, Meng D, Locke IC, Knowles JC, Mordan N, Salih V, et al. Novel poly (3‐hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. Polym Int. 2016;65:661–74.

    Article  CAS  Google Scholar 

  46. Hao L, Lawrence J. Albumin and fibronectin protein adsorption on CO2-laser-modified biograde stainless steel. Proc Inst Mech Eng H. 2006;220:47–55.

    Article  CAS  Google Scholar 

  47. Hao L, Lawrence J. Effects of Nd: YAG laser treatment on the wettability characteristics of a zirconia-based bioceramic. Opt Lasers Eng. 2006;44:803–14.

    Article  Google Scholar 

  48. Felgueiras HP, Antunes JC, Martins MCL, Barbosa MA. Fundamentals of protein and cell interactions in biomaterials. In: Barbosa M, Martins MC, editors. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair. Woodhead Publishing; 2018. p. 1-27.

  49. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J. 1990;4:2868–80.

    Article  CAS  Google Scholar 

  50. Norde W, Horbett A, Brash JL. Proteins at interfaces III: introductory overview. In: Horbett TA, John L Brash JL, Norde W, editors. Proteins at Interfaces III State of the Art. American Chemical Society; 2012. p.1-34.

  51. Sinha SD, Chatterjee S, Maity PK, Tarafdar S, Moulik SP. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin. bioRxiv. 2014. arXiv:1411 5108.

  52. Moazzam P, Razmjou A, Golabi M, Shokri D, Landarani‐Isfahani A. Investigating the BSA protein adsorption and bacterial adhesion of Al‐alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure. J Biomed Mater Res A. 2016;104:2220–33.

    Article  CAS  Google Scholar 

  53. Lizarraga‐Valderrama LR, Nigmatullin R, Taylor C, Haycock JW, Claeyssens F, Knowles JC, et al. Nerve tissue engineering using blends of poly (3‐hydroxyalkanoates) for peripheral nerve regeneration. Eng Life Sci. 2015;15:612–21.

    Article  Google Scholar 

  54. Young R, Terenghi G, Wiberg M. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br J Plast Surg. 2002;55:235–40.

    Article  CAS  Google Scholar 

  55. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q. Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009;30:217–25.

    Article  CAS  Google Scholar 

  56. Singh AK, Mallick N. Exploitation of inexpensive substrates for production of a novel SCL–LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol. 2009;36:347–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the ReBioStent project – European Union’s Seventh Programme for research, technological development and demonstration under grant agreement number 604251, HyMedPoly project - Horizon 2020 under the grant agreement no 643050 and Neurimp project under grant agreement Grant Agreement No. 604450 for the funding provided to PB, BL, EM and RN. Finally, the authors would also like to thank Dr. Nicola Mordan from Eastman Dental Institute, University College London for her contribution in SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basnett, P., Marcello, E., Lukasiewicz, B. et al. Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. J Mater Sci: Mater Med 29, 179 (2018). https://doi.org/10.1007/s10856-018-6183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6183-9

Navigation