Skip to main content
Log in

Mesoporous silica nanoparticles in nanomedicine applications

  • Special Issue: ESB 2017
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the last few years mesoporous silica nanoparticles (MSNs) have gained the attention of the nanomedicine research community, especially for the potential treatment of cancer. Although this topic has been reviewed before, periodic updates on such a hot topic are necessary due to the dynamic character of this field. The reasons that make MSNs so attractive for designing controlled drug delivery systems lie beneath their physico-chemical stability, easy functionalisation, low toxicity and their great loading capacity of many different types of therapeutic agents. The present brief overview tries to cover some of the recent findings on stimuli-responsive mesoporous silica nanocarriers together with the efforts to design targeted nanosystems using that platform. The versatility of those smart nanocarriers has promoted them as very promising candidates to be used in the clinic in the near future to overcome some of the pitfalls of conventional medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Webster TJ. Nanomedicine: what’s in a definition? Int J Nanomed. 2016;1:115–6.

    Article  Google Scholar 

  2. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115:11147–90.

    Article  CAS  Google Scholar 

  3. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2016;17:20–37.

    Article  Google Scholar 

  4. Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv. 2017;14:851–64.

    Article  CAS  Google Scholar 

  5. Vallet-Regí M, Rámila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13:308–11.

    Article  Google Scholar 

  6. Manzano M, Vallet-Regí M. New developments in ordered mesoporous materials for drug delivery. J Mater Chem. 2010;20:5593–604.

    Article  CAS  Google Scholar 

  7. Manzano M, Colilla M, Vallet-Regí M. Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv. 2009;6:1383–400.

    Article  CAS  Google Scholar 

  8. Baeza A, Manzano M, Colilla M, Vallet-Regí M. Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomater Sci. 2016;4:803–13.

    Article  CAS  Google Scholar 

  9. Vallet-Regí M, Manzano M, González-Calbet JM, Okunishi E. Evidence of drug confinement into silica mesoporous matrices by STEM spherical aberration corrected microscopy. Chem Commun. 2010;46:2956–8.

    Article  Google Scholar 

  10. Vallet-Regí M, Colilla M, González B. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev. 2011;40:596–607.

    Article  Google Scholar 

  11. Simmchen J, Baeza A, Ruiz D, Esplandiu MJ, Vallet-Regí M. Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small. 2012;8:2053–9.

    Article  CAS  Google Scholar 

  12. González B, Ruiz E, Feito MJ, Lopez C, Arcos D, Ramírez C, Matesanz C, Portolés MT, Vallet-Regí M. Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitrogene magnetofection. J Mater Chem. 2011;21:4598–604.

    Article  Google Scholar 

  13. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41:2590–605.

    Article  CAS  Google Scholar 

  14. Vallet-Regí M, Ruiz-Hernandez E. Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater. 2011;23:5177–218.

    Article  Google Scholar 

  15. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine:recent advances. Adv Drug Deliv Rev. 2013;65:689–702.

    Article  CAS  Google Scholar 

  16. Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc. 2006;128:14792–3.

    Article  CAS  Google Scholar 

  17. Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5:1408–13.

    Article  CAS  Google Scholar 

  18. Trewyn BG, Nieweg JA, Zhao Y, Lin VSY. Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J. 2008;137:23–9.

    Article  CAS  Google Scholar 

  19. Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25:3144–76.

    Article  CAS  Google Scholar 

  20. Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials . 2008;29:4045–55.

    Article  CAS  Google Scholar 

  21. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.

    Article  CAS  Google Scholar 

  22. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VSY. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano. 2011;5:1366–75.

    Article  CAS  Google Scholar 

  23. Joglekar M, Roggers RA, Zhao Y, Trewyn BG. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Adv. 2013;3:2454–61.

    Article  CAS  Google Scholar 

  24. Croissant JC, Fatieiev Y, Almalik A, Khashab NM, Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthcare Mater. 2017;7:1700831.

    Article  Google Scholar 

  25. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81.

    Article  CAS  Google Scholar 

  26. Paris JL, de la Torre P, Manzano M, Cabañas MV, Flores AI, Vallet-Regí M. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomater. 2016;33:275–82.

    Article  CAS  Google Scholar 

  27. Nadrah P, Planinšek O, Gaberšček M. Stimulus-responsive mesoporous silica particles. J Mater Sci. 2014;49:481–95.

    Article  CAS  Google Scholar 

  28. Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc. 2008;130:28–9.

    Article  CAS  Google Scholar 

  29. Zhao W, Gu J, Zhang L, Chen H, Shi J. Fabrication of Uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc. 2005;127:8916–17.

    Article  CAS  Google Scholar 

  30. Arcos D, Fal-Miyar V, Ruiz-Hernández E, García-Hernández M, Ruiz-González ML, González-Calbet J, Vallet-Regí M. Supramolecular mechanisms in the synthesis of mesoporous magnetic nanospheres for hyperthermia. J Mater Chem. 2012;22:64–72.

    Article  CAS  Google Scholar 

  31. Guisasola E, Baeza A, Talelli M, Arcos D, Moros M, de la Fuente JM, Vallet-Regí M. Magnetic-responsive release controlled by hot spot effect. Langmuir. 2015;31:12777–82.

    Article  CAS  Google Scholar 

  32. Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater. 2012;24:517–24.

    Article  CAS  Google Scholar 

  33. Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano. 2011;5:1259–66.

    Article  Google Scholar 

  34. Giri S, Trewyn BG, Stellmaker MP, Lin VSY. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed. 2005;44:5038–44.

    Article  CAS  Google Scholar 

  35. Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature. 2003;421:350–3.

    Article  CAS  Google Scholar 

  36. Martínez-Carmona M, Baeza A, Rodriguez-Milla MA, García-Castro J, Vallet-Regí M. Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. J Mater Chem B. 2015;3:5746–52.

    Article  Google Scholar 

  37. Martínez-Carmona M, Lozano D, Baeza A, Colilla M, Vallet-Regí M. A novel visible light responsive nanosystem for cancer treatment. Nanoscale. 2017;9:15967–73.

    Article  Google Scholar 

  38. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9:11023–33.

    Article  CAS  Google Scholar 

  39. Anirudhan TS, Nair AS. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. J Mater Chem B. 2018;6:428–39.

    Article  CAS  Google Scholar 

  40. Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials. 2013;34:2057–68.

    Article  CAS  Google Scholar 

  41. Liu R, Zhang Y, Zhao X, Agarwal A, Mueller LJ, Feng P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J Am Chem Soc. 2010;132:1500–1.

    Article  CAS  Google Scholar 

  42. Gan Q, Lu X, Yuan Y, Qian J, Zhou H, Lu X, Shi J, Liu C. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials. 2011;32:1932–42.

    Article  CAS  Google Scholar 

  43. Xu C, Lin Y, Wang J, Wu L, Wei W, Ren J, Qu X. Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2. Adv Healthc Mater. 2013;2:1591–9.

    Article  CAS  Google Scholar 

  44. Feng W, Zhou X, He C, Qiu K, Nie W, Chen L, Wang H, Mo X, Zhang Y. Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J Mater Chem B. 2013;1:5886–98.

    Article  CAS  Google Scholar 

  45. Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF, Zink JI, Nel AE. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc. 2010;132:12690–7.

    Article  CAS  Google Scholar 

  46. Gao Y, Yang C, Liu X, Ma R, Kong D, Shi L. A multifunctional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery. Macromol Biosci. 2012;12:251–9.

    Article  CAS  Google Scholar 

  47. Rim HP, Min KH, Lee HJ, Jeong SY, Lee SC. pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew Chem Int Ed. 2011;50:8853–7.

    Article  CAS  Google Scholar 

  48. Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Selective topotecan delivery to cancer cells by targeted pH-sensitive mesoporous silica nanoparticles. RSC Adv. 2016;6:50923–32.

    Article  Google Scholar 

  49. Gisbert-Garzarán M, Lozano D, Vallet-Regí M, Manzano M. Self-immolative polymers as novel pH-responsive gatekeepers for drug delivery. RSC Adv. 2017;7:132–6.

    Article  Google Scholar 

  50. Yuan L, Tang Q, Yang D, Zhang JZ, Zhang F, Hu J. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J Phys Chem C. 2011;115:9926–32.

    Article  CAS  Google Scholar 

  51. Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem. 2011;21:9239.

    Article  CAS  Google Scholar 

  52. Li Z, Clemens DL, Lee B-Y, Dillon BJ, Horwitz MA, Zink JI. Mesoporous silica nanoparticles with ph-sensitive nanovalves for delivery of moxifloxacin provide improved treatment of lethal pneumonic tularemia. ACS Nano. 2015;9:10778–89.

    Article  CAS  Google Scholar 

  53. Bildstein L, Dubernet C, Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev. 2011;63:3–23.

    Article  CAS  Google Scholar 

  54. Baeza A, Guisasola E, Torres-Pardo A, González-Calbet JM, Melen GJ, Ramírez M, Vallet-Regí M. Hybrid enzyme-polymeric capsules/mesoporous silica nanodevice for in situ cytotoxic agent generation. Adv Funct Mater. 2014;24:4625–33.

    Article  CAS  Google Scholar 

  55. Zhang W, Shen J, Su H, Mu G, Sun J-H, Tan C-P, Liang XJ, Ji L-N, Mao Z-W. Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl Mater Interfaces. 2016;8:13332–40.

    Article  CAS  Google Scholar 

  56. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  Google Scholar 

  57. Nakamura H, Fang J, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv. 2015;12:53–64.

    Article  CAS  Google Scholar 

  58. Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen JC, Stoddart JF, Tamanoi F, Zink JI. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small. 2011;7:1816–26.

    Article  CAS  Google Scholar 

  59. Fang W, Wang Z, Zong S, Chen H, Zhu D, Zhong Y, Cui Y. pH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron. 2014;57:10–5.

    Article  CAS  Google Scholar 

  60. Mickler FM, Moeckl L, Ruthardt N, Ogris M, Wagner E, Braeuchle C. Tuning nanoparticle uptake: live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand. Nano Lett. 2012;12:3417–23.

    Article  CAS  Google Scholar 

  61. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Linden M. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 2009;3:197–206.

    Article  CAS  Google Scholar 

  62. Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine. 2012;8:212–20.

    Article  CAS  Google Scholar 

  63. Wang LS, Wu LC, Lu SY, Chang LL, Teng IT, Yang CM, Ho JAA. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano. 2010;4:4371–9.

    Article  CAS  Google Scholar 

  64. Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc. 2006;128:14792–3.

    Article  CAS  Google Scholar 

  65. Porta F, Lamers GEM, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, Backendorf C, Zink JI, Kros A. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthc Mater. 2013;2:281–6.

    Article  CAS  Google Scholar 

  66. Vivero-Escoto JL, Taylor-Pashow KML, Huxford RC, Della Rocca J, Okoruwa C, An H, Lin W, Lin W. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: Synthesis, characterization, target-specificity, and renal clearance. Small. 2011;7:3519–28.

    Article  CAS  Google Scholar 

  67. Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Selective topotecan delivery to cancer cells by targeted pH-sensitive mesoporous silica nanoparticles. RSC Adv. 2016;6:50923–32.

    Article  Google Scholar 

  68. López V, Villegas MR, Rodríguez V, Villaverde G, Lozano D, Baeza A, Vallet-Regí M. Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl Mater Interfaces. 2017;9:26697–706.

    Article  Google Scholar 

  69. Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Linden M. Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small. 2010;6:1234–41.

    Article  CAS  Google Scholar 

  70. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.

    Article  CAS  Google Scholar 

  71. Li Z, Dong K, Huang S, Ju E, Liu Z, Yin M, Ren J, Qu X. A smart nanoassembly for multistage targeted drug delivery and magnetic resonance imaging. Adv Funct Mater. 2014;24:3612–20.

    Article  CAS  Google Scholar 

  72. Pan L, Liu J, He Q, Wang L, Shi J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials. 2013;34:2719–30.

    Article  CAS  Google Scholar 

  73. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc. 2013;135:4799–804.

    Article  CAS  Google Scholar 

  74. Milgroom A, Intrator M, Madhavan K, Mazzaro L, Shandas R, Liu B, Park D. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf B. 2014;116:652–7.

    Article  CAS  Google Scholar 

  75. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19:5737–43.

    Article  CAS  Google Scholar 

  76. Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials. 2011;32:4976–86.

    Article  CAS  Google Scholar 

  77. Villaverde G, Baeza A, Melen GJ, Alfranca A, Ramírez M, Vallet-Regí M. A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma. J Mater Chem B. 2015;3:4831–42.

    Article  CAS  Google Scholar 

  78. Villaverde G, Nairi V, Baeza A, Vallet-Regí M. Double sequential encrypted targeting sequence: a new concept for bone cancer treatment. Chem Eur J. 2017;23:7174–9.

    Article  CAS  Google Scholar 

  79. Luo GF, Chen WH, Liu Y, Zhang J, Cheng SX, Zhuo RX, Zhang XZ. Charge-reversal plug gate nanovalves on peptide-functionalized mesoporous silica nanoparticles for targeted drug delivery. J Mater Chem B. 2013;1:5723–32.

    Article  CAS  Google Scholar 

  80. Zhang J, Yuan ZF, Wang Y, Chen WH, Luo GF, Cheng SX, Zhuo RX, Zhang XZ. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc. 2013;135:5068–73.

    Article  CAS  Google Scholar 

  81. Xiao D, Jia HZ, Zhang J, Liu CW, Zhuo RX, Zhang XZ. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small. 2014;10:591–8.

    Article  CAS  Google Scholar 

  82. He L, Huang Y, Zhu H, Pang G, Zheng W, Wong YS, Chen T. Cancer-targeted monodisperse mesoporous silica nanoparticles as carrier of ruthenium polypyridyl complexes to enhance theranostic effects. Adv Funct Mater. 2014;24:2754–63.

    Article  CAS  Google Scholar 

  83. Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 2017;65:393–404.

    Article  Google Scholar 

  84. Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, Mou CY, Chen CT, Lo LW. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J Mater Chem. 2010;20:6149–57.

    Article  CAS  Google Scholar 

  85. Huang DM, Chung TH, Hung Y, Lu F, Wu SH, Mou CY, Yao M, Chen YC. Toxicol. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol. 2008;231:208–15.

    Article  CAS  Google Scholar 

  86. Fang IJ, Slowing II, Wu KCW, Lin VSY, Trewyn BG. Ligand conformation dictates membrane and endosomal trafficking of arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles. Chemistry. 2012;18:7787–92.

    Article  CAS  Google Scholar 

  87. Yang H, Zhao F, Li Y, Xu M, Li L, Wu C, Miyoshi H, Liu Y. VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro. Int J Nanomed. 2013;8:1897–906.

    Google Scholar 

  88. Goel S, Chen F, Hong H, Valdovinos HF, Hernandez R, Shi S, Barnhart TE, Cai W. VEGF(121)-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces. 2014;6:21677–85.

    Article  CAS  Google Scholar 

  89. Villegas MR, Baeza A, Vallet-Regí M. Hybrid collagenase nanocapsules for enhanced nanocarrier penetration in tumoral tissues. ACS Appl Mater Interfaces. 2015;7:24075–81.

    Article  CAS  Google Scholar 

  90. Vegh I, Grau M, Gracia M, Grande J, de la Torre P, Flores AI. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther. 2013;20:8–16.

    Article  CAS  Google Scholar 

  91. Paris JL, de la Torre P, Cabañas MV, Manzano M, Grau M, Flores AI, Vallet-Regí M. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy. Nanoscale. 2017;4:5528–37.S

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council, ERC-2015-AdG (VERDI), Proposal no. 694160 and Ministerio de Economía y Competitividad (MINECO) (MAT2015-64831-R grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Vallet-Regí.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzano, M., Vallet-Regí, M. Mesoporous silica nanoparticles in nanomedicine applications. J Mater Sci: Mater Med 29, 65 (2018). https://doi.org/10.1007/s10856-018-6069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6069-x

Navigation