Skip to main content

Advertisement

Log in

Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Sustained and controlled release of neurotrophic factors in target tissue through nanomaterial based delivery system could be a better strategy for nerve tissue regeneration. The present study aims to prepare the nerve growth factor (NGF) encapsulated chitosan nanoparticles (NGF-CNPs) and its evaluation on neuronal differentiation potentiality of canine bone marrow derived mesenchymal stem cells (cBM-MSCs). The NGF-CNPs were prepared by ionotropic gelation method with tripolyphosphate (TPP) as an ionic cross-linking agent. Observations on physiochemical properties displayed the size of nanoparticles as 80–90 nm with positive zeta potential as well as an ionic interaction between NGF and nanoparticle. NGF loading efficiency was found to be 61% while its sustained release was observed by an in vitro release kinetics study. These nanoparticles were found to be cytocompatible to cBM-MSCs when supplemented at a concentration upto 4 mg/ml in culture media. The NGF-CNP supplemented culture media was able to transdifferentiate the preinduced cBM-MSCs into neurons in a better way than unbound NGF supplementation. Further, it was also noticed that NGF-CNPs were able to transdifferentiate cBM-MSCs without any chemical based preinduction. In conclusion, our findings propose that NGF-CNPs are capable of releasing bioactive NGF with the ability to transdifferentiate mesenchymal stem cells into neurons, suggesting its potential future application in nerve tissue regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berqer F. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells. 2006;24:2868–76.

    Article  Google Scholar 

  2. Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Phys. 2006;206:229–37.

    Article  Google Scholar 

  3. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.

    Article  Google Scholar 

  4. Jung D, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM. A comparison of autologous and allogenic bone marrow derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci. 2009;285:67–77.

    Article  Google Scholar 

  5. Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P. A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun. 2008;372:520–4.

    Article  Google Scholar 

  6. Kim KN, Oh SH, Lee KH, Yoon DH. Effect of human mesenchymal stem cell transplantation combined with growth factor infusion in the repair of injured spinal cord. Acta Neurochir Suppl. 2006;99:133–6.

    Article  Google Scholar 

  7. Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS, Kweon OK. Transplantation of canine umbilical cord blood derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci. 2007;8:275–82.

    Article  Google Scholar 

  8. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell. 1994;76:1001–11.

    Article  Google Scholar 

  9. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368:246–49.

    Article  Google Scholar 

  10. Boyd JG, Gordon T. Glial cell line-derived neurotrophic factor and brainderived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol. 2003;183:610–9.

    Article  Google Scholar 

  11. Zhao LX, Zhang J, Cao F, Meng L, Wang DM, Li YH, Jiao WC, Zheng M, Xu XH, Pei XT. Modification of the brain-derived neurotrophic factor gene: a portal to transform mesenchymal stem cells into advantageous engineering cells for neuroregeneration and neuroprotection. Exp Neurol. 2004;190:396–406.

    Article  Google Scholar 

  12. Naghdi M, Tiraihi T, Namin SAM, Arabkheradmand J. Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy. 2009a;11:137–52.

    Article  Google Scholar 

  13. Naghdi M, Tiraihi T, Namin SAM, Arabkheradmand J. Induction of bone marrow stromal cells into cholinergic-like cells by nerve growth factor. Iran Biomed J. 2009b;2:117–23.

    Google Scholar 

  14. Lim JY, Park SI, Kim SM, Jun JA, Oh JH, Ryu CH, Jeong CH, Park SH, Park SA, Oh W, Chang JW, Jeun SS. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and β-catenin phosphorylation and following transplantation into the developing brain. Cell Transpl. 2011;20:1855–66.

    Article  Google Scholar 

  15. Tsai C, Lu MC, Chen YS, Wu CH, Lin C. Locally administered nerve growth factor suppresses ginsenoside Rb1-enhanced peripheral nerve regeneration. Am J Chin Med. 2003;31:665–73.

    Article  Google Scholar 

  16. Zeng W, Huang J, Hu X, Xiao W, Rong M, Yuan Z, Luo Z. Ionically cross-linked chitosan microspheres for controlled release of bioactive nerve growth factor. Int J Pharm. 2011;421:283–90.

    Article  Google Scholar 

  17. Dyondi D, Webster TJ, Banerjee R. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomed. 2013;8:47–59.

    Google Scholar 

  18. Li X, Yang Z, Zhang A, Wang T, Chen W. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials. 2009;30:1121–32.

    Article  Google Scholar 

  19. Lu GY, Kong LJ, Sheng BY, Wang G, Gong YD, Zhang XF. Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur Polym J. 2007;43:3807–18.

    Article  Google Scholar 

  20. Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A. 2010a;93:164–74.

    Google Scholar 

  21. Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. Electrical stimulation accelerates motor functional recovery in the rat model of 15 mm sciatic nerve gap bridged by scaffolds with longitudinally oriented micro-channels. Neural Repair. 2010b;24:736–45.

    Article  Google Scholar 

  22. Lee AC, Yu VM, Lowe JB, Brenner MJ, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol. 2003;184:295–303.

    Article  Google Scholar 

  23. Yu H, Liu J, Ma J, Xiang L. Local delivery of controlled released nerve growth factor promotes sciatic nerve regeneration after crush injury. Neurosci Lett. 2014;566:177–81.

    Article  Google Scholar 

  24. Bhang SH, Lee TJ, Lim JM, Lim JS, Han AM, Choi CY, Kwon YH, Kim BS. The effect of the controlled release of nerve growth factor from collagen gel on the coeffiiency of neural cell culture. Biomaterials. 2009;30:126–32.

    Article  Google Scholar 

  25. Cho Y, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topgraphical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6:4725–33.

    Article  Google Scholar 

  26. LuZhong Z, YouLang Z, GuiCai L, YaHong Z, XiaoSong G, YuMin Y. Nanoparticle mediated controlled delivery of dual growth factors. Sci China Life Sci. 2014;57:256–62.

    Article  Google Scholar 

  27. Carrello Gomez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosan microsphere. Int J Pharm. 1997;148:231–40.

    Article  Google Scholar 

  28. Richardson SCW, Kolbe HVJ, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm. 1999;178:231–43.

    Article  Google Scholar 

  29. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Cont Release. 2006;115:216–25.

    Article  Google Scholar 

  30. Csaba N, Koping Hoggard M, Alonso MJ. Ionically cross linked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm. 2009;382:205–14.

    Article  Google Scholar 

  31. DeJong W, Hagens W, Krystek P, Burger M, Sips A, Geertsma RE. Particle size dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–9.

    Article  Google Scholar 

  32. Liu TG, Li B, Huang W, Lv B, Chen J, Zhang JX, Zhu LP. Effects and kinetics of a novel temperature cycling treatment on the N-deacetylation of chitin in alkaline solution. Carbohydr Polym. 2009;77:110–7.

    Article  Google Scholar 

  33. Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym. 2010;79:1–8.

    Article  Google Scholar 

  34. Khemkhao M, Nuntakumjorn B, Techkarnjanaruk S, Phalakornkule C. Effect of chitosan on UASB treating POME during a transition from mesophilic to thermophilic conditions. Bioresour Technol. 2011;102:4674–81.

    Article  Google Scholar 

  35. Park JS, Yang NHN, Woo DG, Jeon SY, Park KH. The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres. Biomaterials. 2011;32:28–38.

    Article  Google Scholar 

  36. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent, applications and mode of action. Biomacromolecules. 2003;4:1457–65.

    Article  Google Scholar 

  37. Hirano S. Chitin and chitosan as novel biotechnological materials. Polym Int. 1999;48:732–4.

    Article  Google Scholar 

  38. Kurita K. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol. 2006;8:203–26.

    Article  Google Scholar 

  39. Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF. Biofabrication with chitosan. Biomacromolecules. 2005;6:2881–94.

    Article  Google Scholar 

  40. Mourya VK, Inamdar NN. Chitosan-modifications and applications: opportunities galore. React Funct Polym. 2008;68:1013–51.

    Article  Google Scholar 

  41. Yang Y, Liu M, Gu Y, Lin S, Ding F, Gu X. Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol Int. 2009;33:352–6.

    Article  Google Scholar 

  42. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364–70.

    Article  Google Scholar 

  43. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164:247–56.

    Article  Google Scholar 

  44. Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun. 2001;282:148–52.

    Article  Google Scholar 

  45. Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249:139–47.

    Article  Google Scholar 

  46. Cetin M, Aktas Y, Vural I, Capan Y, Dogan LA, Duman M, Dalkara T. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv. 2007;14:525–9.

    Article  Google Scholar 

  47. Pfaffl MW. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acid Res. 2001;29:e45.

    Article  Google Scholar 

  48. Houweling DA, Van Asseldonk JT, Lankhorst AJ, Hamers FP, Martin D, Bär PR, Joosten EA. Local application of collagen containing brain-derived neurotrophic factor decreases the loss of function after spinal cord injury in the adult rat. Neurosci Lett. 1998;251:193–6.

    Article  Google Scholar 

  49. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci. 2002;99:2199–204.

    Article  Google Scholar 

  50. Pulavendran S, Rose C, Mandal AB. Hepatocyte growth factor incorporated chitosan nanoparticles differentiate murine bone marrow mesenchymal stem cells into hepatocytes in vitro. IET Nanobiotechnol. 2010;4:51–60.

    Article  Google Scholar 

  51. Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A. Chitosan nanoparticles: preparation, size evaluation and stability. Int J Pharm. 2013;455:219–33.

    Article  Google Scholar 

  52. Siterberg J, Özcetin A, Ehrhardt C, Bakowsky U. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm. 2010;74:2–13.

    Article  Google Scholar 

  53. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carr Syst. 2002;19:99–134.

    Article  Google Scholar 

  54. Janes KA, Alonso MJ. Depolymerized chitosan nanoparticles for protein delivery: preparation and characterization. J Appl Polym Sci. 2003;88:2769–76.

    Article  Google Scholar 

  55. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 2012;90:21–27.

    Article  Google Scholar 

  56. Rajam M, Pulavendran S, Rose C, Mandal AB. Chitosan nanoparticles as a dual growth factor delivery system for tissue engineering applications. Int J Pharm. 2011;410:145–52.

    Article  Google Scholar 

  57. Stoica R, Şomoghia R, Iona RM. Preparation of chitosan–tripolyphosphate nanoparticles for the encapsulation of polyphenols extracted from rose hips. Dig J Nanomater Biostructures. 2013;8:955–63.

    Google Scholar 

  58. Schipper NG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (CaCo-2) cells. Pharm Res. 1996;13:1686–92.

    Article  Google Scholar 

  59. Schipper NG, Varum KM, Stenberg P, Ocklind G, Lennernas H, Artursson P. Chitosans as absorption enhancers of poorly absorbable drugs. 3: Influence of mucus on absorption enhancement. Eur J Pharm Sci. 1999;8:335–43.

    Article  Google Scholar 

  60. Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res. 1997;34:21–28.

    Article  Google Scholar 

  61. Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11:1186–9.

    Article  Google Scholar 

  62. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261–8.

    Article  Google Scholar 

  63. Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158:122–32.

    Article  Google Scholar 

  64. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213–20.

    Article  Google Scholar 

  65. Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M. Different biokinetics of nanomedicines linking totheir toxicity: an overview. Daru. 2013;21:14.

    Article  Google Scholar 

  66. Park JH, Cho YW, Chung H, Kwon IC, Jeong SY. Synthesis and characterization of sugar-bearing chitosan derivatives: aqueous solubility and biodegradability. Biomacromolecules. 2003;4:1087–91.

    Article  Google Scholar 

  67. Teo KK, Yim EKF. Nano-patterned poly-ε-caprolactone with controlled release of retinoic acid and nerve growth factor for neuronal regeneration. IFMBE Proc. 2009;23:1348–51.

    Article  Google Scholar 

  68. Zhang N, Wimmer J, Qian SJ, Chen WS. Stem cells: current approach and future prospects in spinal cord injury repair. Anat Rec. 2010;293:519–30.

    Article  Google Scholar 

  69. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fisher I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res. 2004;77:192–204.

    Article  Google Scholar 

  70. Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res. 2004;77:174–91.

    Article  Google Scholar 

  71. Nakano R, Edamura K, Nakayama T, Teshima K, Asano K, Narita T, Okabayashi K, Sugiya H. Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor. J Vet Med Sci. 2014;77:27–35.

    Article  Google Scholar 

  72. Redhead HM, Davis SS, Illum L. Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release. 2001;70:353–63.

    Article  Google Scholar 

  73. Corradetti B, Freile P, Pells S, Bagnaninchi P, Park J, Fahmy TM, de Sousa PA. Paracrine signalling events in embryonic stem cell renewal mediated by affinity targeted nanoparticles. Biomaterials. 2012;33:6634–43.

    Article  Google Scholar 

  74. Del Puerto HL, Martins AS, Moro L, Milsted A, Alves F, Braz GF, Vasconcelos AC. Caspase3-/-8/-9 Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes ofdogs naturally infected with canine distemper virus. Genet Mol Res. 2010;269:151–61.

    Article  Google Scholar 

  75. Wilcox JT, Lai JK, Semple E, Brisson BA, Gartley C, Armstrong JN, Betts DH. Synaptically-competent neurons derived from canine embryonic stem cells by lineage selection with EGF and noggin. PLoS One. 2011;6:e19768.

    Article  Google Scholar 

  76. Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M. Isolation, characterization and differentiation potential of canine adipose-derived stem cell. Cell Transpl. 2010;19:279–89.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P., India for providing the facilities in carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhan Bag.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mili, B., Das, K., Kumar, A. et al. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci: Mater Med 29, 4 (2018). https://doi.org/10.1007/s10856-017-6008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-6008-2

Navigation