Skip to main content

Advertisement

Log in

Polyetheretherketone (PEEK) for medical applications

  • Clinical Applications of Biomaterials
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polyetheretherketone (PEEK) is a polyaromatic semi-crystalline thermoplastic polymer with mechanical properties favorable for bio-medical applications. Polyetheretherketone forms: PEEK-LT1, PEEK-LT2, and PEEK-LT3 have already been applied in different surgical fields: spine surgery, orthopedic surgery, maxillo-facial surgery etc. Synthesis of PEEK composites broadens the physicochemical and mechanical properties of PEEK materials. To improve their osteoinductive and antimicrobial capabilities, different types of functionalization of PEEK surfaces and changes in PEEK structure were proposed. PEEK based materials are becoming an important group of biomaterials used for bone and cartilage replacement as well as in a large number of diverse medical fields. The current paper describes the structural changes and the surface functionalization of PEEK materials and their most common biomedical applications. The possibility to use these materials in 3D printing process could increase the scientific interest and their future development as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fan JP, Tsui CP, Tang CY, Chow CL. Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials. 2004;25:5363–73.

    Article  Google Scholar 

  2. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.

    Article  Google Scholar 

  3. Green S. A polyaryletherketone biomaterial for use in medical implant applications. Chem Artic News. 2015;5:1–9.

    Google Scholar 

  4. Ferguson SJ, Visser JM, Polikeit A. The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis. Eur Spine J. 2006;15:149–56.

    Article  Google Scholar 

  5. Bradley JSH, Hastings GW, Johnson-Nurse C. Carbon fibre reinforced epoxy as a high strength, low modulus material for internal fixation plates. Biomaterials. 1980;1:38–40.

    Article  Google Scholar 

  6. Ha SW, Kirch M, Birchler F, Eckert KL, Mayer J, Wintermantel E, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. J Mater Sci Mater Med. 1997;8:683–90.

    Article  Google Scholar 

  7. Kizuki T, Matsushita T, Kokubo T. Apatite-forming PEEK with TiO2 surface layer coating. J Mater Sci Mater Med. 2015;26:5359.

    Article  Google Scholar 

  8. Lin TW, Corvelli AA, Frondoza CG, Roberts JC, Hungerford DS. Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J Biomed Mater Res. 1997;36:137–44.

    Article  Google Scholar 

  9. Sasuga TH, Hagiwara M. Radiation deterioration of several aromatic polymers under oxidative conditions. Polymer. 1987;28:1915–21.

    Article  Google Scholar 

  10. Li HM, Fouracre RA, Given MJ, Banford HM, Wysocki S, Karolczak S. Effects on polyetheretherketone and polyethersulfone of electron and gamma irradiation. Dielectr Electr Insul. 1999;6:295–303.

    Article  Google Scholar 

  11. Sobieraj MC, Kurtz SM, Rimnac CM. Notch sensitivity of PEEK in monotonic tension. Biomaterials. 2009;30:6485–94.

    Article  Google Scholar 

  12. Scolozzi P, Martinez A, Jaques B. Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant. J Craniofac Surg. 2007;18:224–8.

    Article  Google Scholar 

  13. Ranaud M, Farkasdi S, Pons C, Panayotov I, Collart-Dutilleur P-Y, Taillades H, et al. A new rat model for translational research in bone regeneration. Tissue Eng C. 2015. doi:10.1089/ten.tec.2015.0187.

    Google Scholar 

  14. Jockisch KA, Brown SA, Bauer TW, Merritt K. Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res. 1992;26:133–46.

    Article  Google Scholar 

  15. Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials. 2008;29:1563–72.

    Article  Google Scholar 

  16. Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite–polyetheretherketone biocomposites. Compos Sci Technol. 2003;63:421–5.

    Article  Google Scholar 

  17. Abu Bakar MS, Cheng MH, Tang SM, Yu SC, Liao K, Tan CT, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials. 2003;24:2245–50.

    Article  Google Scholar 

  18. Petrovic L, Pohle D, Munstedt H, Rechtenwald T, Schlegel KA, Rupprecht S. Effect of betaTCP filled polyetheretherketone on osteoblast cell proliferation in vitro. J Biomed Sci. 2006;13:41–6.

    Article  Google Scholar 

  19. Kim IY, Sugino A, Kikuta K, Ohtsuki C, Cho SB. Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl. 2009;24:105–18.

    Article  Google Scholar 

  20. Wong KLWC, Liu WC, Pan HB, Fong MK, Lam WM, Cheung WL, Tang WM, Chiu KY, Luk KD, Lu WW. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials. 2009;30:3810–7.

    Article  Google Scholar 

  21. Kuo MC, Tsai CM, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys. 2005;90:185–95.

    Article  Google Scholar 

  22. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomed. 2012;7:1215–25.

    Google Scholar 

  23. Wang DH, Tanc JB, Tan LS. Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly(ether-ketone). Mater Sci Eng B. 2006;132:103–7.

    Article  Google Scholar 

  24. Morrison CMR, MacDonald C, Wykman A, Goldie I, Grant MH. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomaterials. 1995;16:987–92.

    Article  Google Scholar 

  25. Hunter A, Archer CW, Walker PS, Blunn GW. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials. 1995;16:287–95.

    Article  Google Scholar 

  26. Dennes TJ, Schwartz J. A nanoscale adhesion layer to promote cell attachment on PEEK. J Am Chem Soc. 2009;131:3456–7.

    Article  Google Scholar 

  27. Han CM, Lee EJ, Kim HE, Koh YH, Kim KN, Ha Y, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials. 2010;31:3465–70.

    Article  Google Scholar 

  28. Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med. 2005;16:671–7.

    Article  Google Scholar 

  29. Scotchford CA, Garle MJ, Batchelor J, Bradley J, Grant DM. Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment. Biomaterials. 2003;24:4871–9.

    Article  Google Scholar 

  30. Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014;35:6758–75.

    Article  Google Scholar 

  31. Kelly CP, Cohen AJ, Yavuzer R, Jackson IT. Cranial bone grafting for orbital reconstruction: is it still the best? J Craniofac Surg. 2005;16:181–5.

    Article  Google Scholar 

  32. Hanasono MM, Goel N, DeMonte F. Calvarial reconstruction wth polyetheretherketone implants. Ann Plastic Surg. 2009;62:653–5.

    Article  Google Scholar 

  33. Kim MM, Boahene KD, Byrne PJ. Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects. Arch Fac Plast Surg. 2009;11:53–7.

    Google Scholar 

  34. Goodsonb ML, Farr D, Keith D, Banks RJ. Use of two-piece polyetheretherketone (PEEK) implants in orbitozygomatic reconstruction. Br J Oral Maxillofac Surg. 2012;50:268–9.

    Article  Google Scholar 

  35. Jalbert F, Boetto S, Nadon F, Lauwers F, Schmidt E, Lopez R. One-step primary reconstruction for complex craniofacial resection with PEEK custom-made implants. J Cranio Maxillo Fac surg. 2014;42:141–8.

    Article  Google Scholar 

  36. Lethaus B, Safi Y, ter Laak-Poort M, Kloss-Brandstatter A, Banki F, Robbenmenke C, et al. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma. 2012;29:1077–83.

    Article  Google Scholar 

  37. O’Reilly EB, Barnett S, Madden C, Welch B, Mickey B, Rozen S. Computed-tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty. J Plast Reconstr Aesthet Surg. 2015;68:329–38.

    Article  Google Scholar 

  38. Thien A, King NK, Ang BT, Wang E, Ng I. Comparison of polyetheretherketone and titanium cranioplasty after decompressive craniectomy. World Neurosurg. 2015;83:176–80.

    Article  Google Scholar 

  39. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ, Kwon HB. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B. 2012;100:1044–52.

    Article  Google Scholar 

  40. Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21:2079–85.

    Article  Google Scholar 

  41. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech. 2015;48:1–7.

    Article  Google Scholar 

  42. Cook SD, Rust-Dawicki AM. Preliminary evaluation of titanium-coated PEEK dental implants. J oral Implantol. 1995;21:176–81.

    Google Scholar 

  43. Schwitalla A, Muller WD. PEEK dental implants: a review of the literature. J Oral implantol. 2013;39:743–9.

    Article  Google Scholar 

  44. Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, et al. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent. 2015;114:666–73.

    Article  Google Scholar 

  45. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

    Article  Google Scholar 

  46. Brockett CL, John G, Williams S, Jin Z, Isaac GH, Fisher J. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements. J Biomed Mater Res B. 2012;100:1459–65.

    Article  Google Scholar 

  47. Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20:163–70.

    Article  Google Scholar 

  48. Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK Material in orthopedic implants: a systematic review. Clin Med Insights Arthr Musculoskelet Disord. 2015;8:33–45.

    Article  Google Scholar 

  49. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60:12–9.

    Article  Google Scholar 

  50. Steinbergn EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

    Article  Google Scholar 

  51. Nakahara I, Takao M, Bandoh S, Bertollo N, Walsh WR, Sugano N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res. 2013;31:485–92.

    Article  Google Scholar 

  52. Grapow MT, Melly LF, Eckstein FS, Reuthebuch OT. A new cable-tie based sternal closure system: description of the device, technique of implantation and first clinical evaluation. J Cardiothorac Surg. 2012;7:59.

    Article  Google Scholar 

  53. Sahoo PK. Polyetheretherketone (PEEK) cages for cervical interbody replacement. Apollo Med. 2013;10:233–6.

    Article  Google Scholar 

  54. Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 2009;9:263–7.

    Article  Google Scholar 

  55. Ha SK, Park JY, Kim SH, Lim DJ, Kim SD, Lee SK. Radiologic Assessment of Subsidence in Stand-Alone Cervical Polyetheretherketone (PEEK) Cage. J Korean Neurosurg Soc. 2008;44:370–4.

    Article  Google Scholar 

  56. Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51:1343–9.

    Google Scholar 

  57. Hee HT, Kundnani V. Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. Spine J. 2010;10:66–9.

    Article  Google Scholar 

  58. Klimo P Jr, Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. Spine J. 2009;9:959–66.

    Article  Google Scholar 

  59. Faldini C, Chehrassan M, Miscione MT, Acri F, d’Amato M, Pungetti C, et al. Single-level anterior cervical discectomy and interbody fusion using PEEK anatomical cervical cage and allograft bone. J Orthop Traumatol. 2011;12:201–5.

    Article  Google Scholar 

  60. Arts MP, Wolfs JF, Corbin TP. The CASCADE trial: effectiveness of ceramic versus PEEK cages for anterior cervical discectomy with interbody fusion; protocol of a blinded randomized controlled trial. BMC Musculoskelet Disord. 2013;14:244.

    Article  Google Scholar 

  61. Yang JJ, Yu CH, Chang BS, Yeom JS, Lee JH, Lee CK. Subsidence and nonunion after anterior cervical interbody fusion using a stand-alone polyetheretherketone (PEEK) cage. Clin Orthop Surg. 2011;3:16–23.

    Article  Google Scholar 

  62. Song KJ, Kim GH, Choi BY. Efficacy of PEEK cages and plate augmentation in three-level anterior cervical fusion of elderly patients. Clin Orthop Surg. 2011;3:9–15.

    Article  Google Scholar 

  63. Walter J, Kuhn SA, Reichart R, Kalff R, Ewald C. PEEK cages as a potential alternative in the treatment of cervical spondylodiscitis: a preliminary report on a patient series. Eur Spine J. 2010;19:1004–9.

    Article  Google Scholar 

  64. Topuz K, Colak A, Kaya S, Simsek H, Kutlay M, Demircan MN, et al. Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J. 2009;18:238–43.

    Article  Google Scholar 

  65. Kulkarni AG, Hee HT, Wong HK. Solis cage (PEEK) for anterior cervical fusion: preliminary radiological results with emphasis on fusion and subsidence. Spine J. 2007;7:205–9.

    Article  Google Scholar 

  66. Kasliwal MK, O’Toole JE. Clinical experience using polyetheretherketone (PEEK) intervertebral structural cage for anterior cervical corpectomy and fusion. J Clin Neurosci. 2014;21:217–20.

    Article  Google Scholar 

  67. Kersten RF, van Gaalen SM, de Gast A, Oner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 2013;15(6):1446–60.

    Article  Google Scholar 

  68. Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, et al. Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci. 2008;15:1240–5.

    Article  Google Scholar 

  69. Matge G. Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir. 2002;144:539–49 discussion 50.

    Article  Google Scholar 

  70. Meier U, Kemmesies D. Experiences with six different intervertebral disc spacers for spondylodesis of the cervical spine. Der Orthop. 2004;33:1290–9.

    Article  Google Scholar 

  71. Niu CC, Liao JC, Chen WJ, Chen LH. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. J Spin Disord Tech. 2010;23:310–6.

    Article  Google Scholar 

  72. Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S. Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord. 2012;13:172.

    Article  Google Scholar 

  73. Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22:1539–46.

    Article  Google Scholar 

  74. Zhou J, Xia Q, Dong J, Li X, Zhou X, Fang T, et al. Comparison of stand-alone polyetheretherketone cages and iliac crest autografts for the treatment of cervical degenerative disc diseases. Acta Neurochir (Wien). 2011;153:115–22.

    Article  Google Scholar 

  75. Bezuidenhout D, Williams DF, Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials. 2015;36:6–25.

    Article  Google Scholar 

  76. Leat ME, Fisher J. A synthetic leaflet heart valve with improved opening characteristics. Med Eng Phys. 1994;16:470–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Vladislavov Panayotov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panayotov, I.V., Orti, V., Cuisinier, F. et al. Polyetheretherketone (PEEK) for medical applications. J Mater Sci: Mater Med 27, 118 (2016). https://doi.org/10.1007/s10856-016-5731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5731-4

Keywords

Navigation