Skip to main content

Advertisement

Log in

Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats

  • Biocompatibility Studies
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effects of highly porous Biosilicate® scaffolds on bone healing in a tibial bone defect model in rats by means of histological evaluation (histopathological and immunohistochemistry analysis) of the bone callus and the systemic inflammatory response (immunoenzymatic assay). Eighty Wistar rats (12 weeks-old, weighing ±300 g) were randomly divided into 2 groups (n = 10 per experimental group, per time point): control group and Biosilicate® group (BG). Each group was euthanized 3, 7, 14 and 21 days post-surgery. Histological findings revealed a similar inflammatory response in both experimental groups, 3 and 7 days post-surgery. During the experimental periods (3–21 days post-surgery), it was observed that the biomaterial degradation, mainly in the periphery region, provided the development of the newly formed bone into the scaffolds. Immunohistochemistry analysis demonstrated that the Biosilicate® scaffolds stimulated cyclooxygenase-2, vascular endothelial growth factor and runt-related transcription factor 2 expression. Furthermore, in the immunoenzymatic assay, BG presented no difference in the level of tumor necrosis factor alpha in all experimental periods. Still, BG showed a higher level of interleukin 4 after 14 days post-implantation and a lower level of interleukin 10 in 21 days post-surgery. Our results demonstrated that Biosilicate® scaffolds can contribute for bone formation through a suitable architecture and by stimulating the synthesis of markers related to the bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Phieffer LS, Goulet JA. Delayed unions of the Tibia. J Bone Joint Surg Am. 2006;88:205–16.

    Google Scholar 

  2. Axelrad TW, Kakar S, Einhorn TA. New technologies for the enhancement of skeletal repair. Injury. 2007;38:S49–62.

    Article  Google Scholar 

  3. Välimäki V, Yrjans JJ, Vuorio E, Aro HT. Combined effect of bone morphogenetic protein-2 gene therapy and bioactive glass microspheres in enhancement of new bone formation. J Biomed Mater Res. 2005;75:501–9.

    Article  Google Scholar 

  4. Drosse I, Volkmer E, Seitz S, Seitz H, Penzkofer R, Zahn K, Matis U, Mutschler W, Augat P, Schieker M. Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: a biomechanical, veterinary and trauma surgical perspective. Tissue Eng Part C Methods. 2008;14:79–88.

    Article  Google Scholar 

  5. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin. 2012;28:457–68.

    Article  Google Scholar 

  6. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft and graft substitutes: a review. Indian J Med Res. 2010;132:15–30.

    Google Scholar 

  7. Dorozhkin S. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009;44:2343–87.

    Article  Google Scholar 

  8. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.

    Article  Google Scholar 

  9. Renno AC, Bossini PS, Crovace MC, Rodrigues AC, Zanotto ED, Parizotto NA. Characterization and in vivo biological performance of biosilicate. Biomed Res Int. 2013;. doi:10.1155/2013/141427.

    Google Scholar 

  10. De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89:649–58.

    Article  Google Scholar 

  11. Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Ortho Surg. 2007;15:525–36.

    Google Scholar 

  12. Ohtsuki C, Kamitakahara M, Miyazaki T. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface. 2009;6:S349–60.

    Article  Google Scholar 

  13. Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed. 2004;15:543–62.

    Article  Google Scholar 

  14. Hu YC, Zhong JP. Osteostimulation of bioglass. Chin Med J. 2009;122:2386–9.

    Google Scholar 

  15. Xin R, Zhang Q, Gao J. Identification of the wollastonite phase in sintered 45S5 bioglass and its effect on in vitro bioactivity. J Non Cryst Solids. 2010;356:1180–4.

    Article  Google Scholar 

  16. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  Google Scholar 

  17. Peitl Filho O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30:509–14.

    Article  Google Scholar 

  18. Kido HW, Oliveira P, Parizotto NA, Crovace MC, Zanotto ED, Peitl-Filho O, Fernandes KP, Mesquita-Ferrari RA, Ribeiro DA, Renno AC. Histopathological, cytotoxicity and genotoxicity evaluation of Biosilicate® glass-ceramic scaffolds. J Biomed Mater Res A. 2013;101:667–73.

    Article  Google Scholar 

  19. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, Panzeri H, Rosa AL, De Oliveira PT. In vitro osteogenesis on a highly bioactive glass–ceramic (Biosilicate®). J Biomed Mater Res A. 2007;82:545–57.

    Article  Google Scholar 

  20. Bossini PS, Rennó AC, Ribeiro DA, Fangel R, Peitl O, Zanotto ED, Parizotto NA. Biosilicate® and low-level laser therapy improve bone repair in osteoporotic rats. J Tissue Eng Regen Med. 2011;5:229–37.

    Article  Google Scholar 

  21. Granito RN, Renno AC, Ravagnani C, Bossini PS, Mochiuti D, Jorgetti V, Driusso P, Peitl O, Zanotto ED, Parizotto NA, Oishi J. In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate®): a biomechanical and histomorphometric study in rat tibial defects. J Biomed Mater Res B Appl Biomater. 2011;97:139–47.

    Article  Google Scholar 

  22. Wu C, Zhu Y, Chang J, Zhang Y, Xiao Y. Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability. J Biomed Mater Res B Appl Biomater. 2010;94:32–43.

    Google Scholar 

  23. Sachot N, Castaño O, Mateos-Timoneda MA, Engel E, Planell JA. Hierarchically engineered fibrous scaffolds for bone regeneration. J R Soc Interface. 2013;10:20130684.

    Article  Google Scholar 

  24. Paşcu EI, Stokes J, McGuinness GB. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013;33:4905–16.

    Article  Google Scholar 

  25. Pinto KN, Tim CR, Crovace MC, Matsumoto MA, Parizotto NA, Zanotto ED, Peitl O, Renno AC. Effects of Biosilicate® scaffolds and low-level laser therapy on the process of bone healing. Photomed Laser Surg. 2013;31:252–60.

    Article  Google Scholar 

  26. Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. Eur J Trau ma. 2006;32:114–24.

    Article  Google Scholar 

  27. Zanotto ED, Ravagnani C, Peitl O, Panzeri H, Lara EH. Process and compositions for preparing particulate, bioactive or resorbable biosilicates for use in the treatment of oral ailments. Sao Carlos: Universidade Federal de Sao Carlos, Universidade de Sao Paulo; 2004. International Classification C03C10/00, WO 2004/074199 (INPI 03006441).

  28. Crovace MC. Obtencão de estruturas porosas altamente bioativas via sinterização do Biosilicate®. Dissertation (MSc in Materials Engineering), Post-Graduate Program in Science and Materials Engineering, Federal University of Sao Carlos, Sao Carlos; 2009.

  29. Oliveira P, Ribeiro DA, Pipi EF, Driusso P, Parizotto NA, Renno AC. Low-level laser therapy does not modulate the outcomes of a highly bioactive glassceramic (Biosilicate®) on bone consolidation in rats. J Mater Sci Mater Med. 2010;21:1379–84.

    Article  Google Scholar 

  30. Pape HC, Marcucio R, Humphrey C, Colnot C, Knobe M, Harvey EJ. Trauma-induced inflammation and fracture healing. J Orthop Trauma. 2010;24:522–5.

    Article  Google Scholar 

  31. Gauthier O, Müller R, von Stechow D, Lamy B, Weiss P, Bouler JM, Aguado E, Daculsi G. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26:5444–53.

    Article  Google Scholar 

  32. Link DP, Van den dolder J, Van den Beucken JJJP, Cuijpers VM, Wolke JGC, Mikos AG, Jansen JA. Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. J Biomed Mater Res A. 2008;87:760–9.

    Article  Google Scholar 

  33. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461–5.

    Article  Google Scholar 

  34. Anderson JM, Mcnally AK. Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol. 2011;33:221–33.

    Article  Google Scholar 

  35. Granito RN, Ribeiro DA, Rennó AC, Ravagnani C, Bossini PS, Peitl-Filho O, Zanotto ED, Parizotto NA, Oishi J. Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study. J Mater Sci Mater Med. 2009;20:2521–6.

    Article  Google Scholar 

  36. Matsumoto MA, Holgado LA, Renno ACM, Caviquioli G, Biguetti CC, Saraiva PP, Kawakami RY. A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. J Mater Sci Mater Med. 2012;23:1447–56.

    Article  Google Scholar 

  37. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  38. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  Google Scholar 

  39. Zhang X, Schwarz EM, Young DA, Puzas E, Rosier RN, O’keefe RJ. Cyclo-oxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J. Clin. Invest. 2002;109:1405–15.

    Article  Google Scholar 

  40. Komori T. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem. 2005;95:445–53.

    Article  Google Scholar 

  41. Keramarisa NC, Calorib GM, Nikolaoua VS, Schemitschc EH, Giannoudisa PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury. 2008;39:S45–57.

    Article  Google Scholar 

  42. Hallab NJ, Jacobs JJ. Biologic Effects of Implant Debris. Bull NYU Joint Dis. 2009;67:182–8.

    Google Scholar 

  43. Shioi A, Teitelbaum SL, Ross FP, Welgus HG, Suzuki H, Ohara J, Lacey DL. Interleukin 4 inhibits murine osteoclast formation in vitro. J Cell Biochem. 1991;47:272–7.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Claudia Muniz Rennó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kido, H.W., Tim, C.R., Bossini, P.S. et al. Porous bioactive scaffolds: characterization and biological performance in a model of tibial bone defect in rats. J Mater Sci: Mater Med 26, 74 (2015). https://doi.org/10.1007/s10856-015-5411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5411-9

Keywords

Navigation