Skip to main content

Advertisement

Log in

Endotoxins affect diverse biological activity of chitosans in matters of hemocompatibility and cytocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitosan is used in several pharmaceutical and medical applications, owing to its good cytocompatibility and hemocompatibility. However, there are conflicting reports regarding the biological activities of chitosan with some studies reporting anti-inflammatory properties while others report pro-inflammatory properties. In this regards we analyzed the endotoxin content in five different chitosans and examined these chitosans with their different deacetylation degrees for their hemocompatibility and cytocompatibility. Therefore, we incubated primary human endothelial cells or whole blood with different chitosan concentrations and studied the protein and mRNA expression of different inflammatory markers or cytokines. Our data indicate a correlation of the endotoxin content and cytokine up-regulation in whole blood for Poly-Morpho-Nuclear (PMN)-Elastase, soluble terminal complement complex SC5b-9, complement component C5/C5a, granulocyte colony-stimulating factor, Interleukin-8 (IL), IL-10, IL-13, IL-17E, Il-32α and monocyte chemotactic protein-1. In contrast, the incubation of low endotoxin containing chitosans with primary endothelial cells resulted in increased expression of E-selectin, intercellular adhesion molecule-1, vascular cell adhesion protein-1, IL-1β, IL-6 and IL-8 in endothelial cells. We suggest that the endotoxin content in chitosan plays a major role in the biological activity of chitosan. Therefore, we strongly recommend analysis of the endotoxin concentration in chitosan, before further determining if it has pro- or anti-inflammatory properties or if it is applicable for pharmaceutical and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15(9):1326–31.

    Article  Google Scholar 

  2. Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol. 2010;56(3):290–9. doi:10.1016/j.yrtph.2009.09.015.

    Article  Google Scholar 

  3. Hirano S. Chitin biotechnology applications. Biotechnol Annu Rev. 1996;2:237–58.

    Article  Google Scholar 

  4. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials. 2002;23(3):833–40.

    Article  Google Scholar 

  5. Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, et al. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials. 2003;24(20):3437–44.

    Article  Google Scholar 

  6. Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, et al. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery. 2001;130(5):844–50. doi:10.1067/msy.2001.117197.

    Article  Google Scholar 

  7. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules. 2011;12(7):2653–9. doi:10.1021/bm200464x.

    Article  Google Scholar 

  8. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed. 2006;1(2):117–28.

    Google Scholar 

  9. Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y. Mucoadhesive dl-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol. 2000;5(1):77–85. doi:10.1081/PDT-100100522.

    Article  Google Scholar 

  10. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5(4):387–91. doi:10.1038/7385.

    Article  Google Scholar 

  11. van der Merwe SM, Verhoef JC, Verheijden JH, Kotze AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58(2):225–35. doi:10.1016/j.ejpb.2004.03.023.

    Google Scholar 

  12. Muzzarelli RA. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs. 2010;8(2):292–312. doi:10.3390/md8020292.

    Article  Google Scholar 

  13. Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002;8(6):1009–16. doi:10.1089/107632702320934100.

    Article  Google Scholar 

  14. VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59(3):585–90. doi:10.1002/jbm.1270.

    Article  Google Scholar 

  15. Mathews S, Kaladhar K, Sharma CP. Cell mimetic monolayer supported chitosan-haemocompatibility studies. J Biomed Mater Res A. 2006;79(1):147–52. doi:10.1002/jbm.a.30710.

    Article  Google Scholar 

  16. Sagnella S, Mai-Ngam K. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Colloids Surf B. 2005;42(2):147–55. doi:10.1016/j.colsurfb.2004.07.001.

    Article  Google Scholar 

  17. Canali MM, Porporatto C, Aoki MP, Bianco ID, Correa SG. Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine. 2010;28(35):5718–24. doi:10.1016/j.vaccine.2010.06.027.

    Article  Google Scholar 

  18. Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, et al. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials. 1997;18(13):947–51.

    Article  Google Scholar 

  19. Nishimura K, Ishihara C, Ukei S, Tokura S, Azuma I. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine. 1986;4(3):151–6.

    Article  Google Scholar 

  20. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabro D, et al. Chitosan-mediated stimulation of macrophage function. Biomaterials. 1994;15(15):1215–20.

    Article  Google Scholar 

  21. Yeo Y, Burdick JA, Highley CB, Marini R, Langer R, Kohane DS. Peritoneal application of chitosan and UV-cross-linkable chitosan. J Biomed Mater Res A. 2006;78(4):668–75. doi:10.1002/jbm.a.30740.

    Article  Google Scholar 

  22. Chellat F, Grandjean-Laquerriere A, Le Naour R, Fernandes J, Yahia L, Guenounou M, et al. Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials. 2005;26(9):961–70. doi:10.1016/j.biomaterials.2004.04.006.

    Article  Google Scholar 

  23. Risbud M, Bhonde M, Bhonde R. Chitosan–polyvinyl pyrrolidone hydrogel does not activate macrophages: potentials for transplantation applications. Cell Transpl. 2001;10(2):195–202.

    Google Scholar 

  24. Risbud MV, Bhonde MR, Bhonde RR. Effect of chitosan–polyvinyl pyrrolidone hydrogel on proliferation and cytokine expression of endothelial cells: implications in islet immunoisolation. J Biomed Mater Res. 2001;57(2):300–5. doi:10.1002/1097-4636(200111)57:2<300.

    Article  Google Scholar 

  25. Chen CL, Wang YM, Liu CF, Wang JY (2008) The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation. Biomaterials 29(14):2173–82. doi:10.1016/j.biomaterials.2008.01.023.

  26. Kim MS, Sung MJ, Seo SB, Yoo SJ, Lim WK, Kim HM. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid beta peptide and interleukin-1beta. Neurosci Lett. 2002;321(1–2):105–9.

    Article  Google Scholar 

  27. Liu HT, Li WM, Li XY, Xu QS, Liu QS, Bai XF, et al. Chitosan oligosaccharides inhibit the expression of interleukin-6 in lipopolysaccharide-induced human umbilical vein endothelial cells through p38 and ERK1/2 protein kinases. Basic Clin Pharmacol Toxicol. 2010;106(5):362–71. doi:10.1111/j.1742-7843.2009.00493.x.

    Google Scholar 

  28. Nam KS, Kim MK, Shon YH. Inhibition of proinflammatory cytokine-induced invasiveness of HT-29 cells by chitosan oligosaccharide. J Microbiol Biotechnol. 2007;17(12):2042–5.

    Google Scholar 

  29. Yoon HJ, Moon ME, Park HS, Im SY, Kim YH. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys Res Commun. 2007;358(3):954–9. doi:10.1016/j.bbrc.2007.05.042.

    Article  Google Scholar 

  30. Lieder R, Gaware VS, Thormodsson F, Einarsson JM, Ng CH, Gislason J, et al. Endotoxins affect bioactivity of chitosan derivatives in cultures of bone marrow-derived human mesenchymal stem cells. Acta Biomater. 2012;. doi:10.1016/j.actbio.2012.08.043.

    Google Scholar 

  31. Wittmer CR, Phelps JA, Saltzman WM, Van Tassel PR (2007) Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials 28(5):851–860. doi:10.1016/j.biomaterials.2006.09.037.

  32. Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26(34):6811–7. doi:10.1016/j.biomaterials.2006.09.037.

    Article  Google Scholar 

  33. Ogawa H, Rafiee P, Heidemann J, Fisher PJ, Johnson NA, Otterson MF, et al. Mechanisms of endotoxin tolerance in human intestinal microvascular endothelial cells. J Immunol. 2003;170(12):5956–64.

    Article  Google Scholar 

  34. Walker T, Wendel HP, Tetzloff L, Heidenreich O, Ziemer G. Suppression of ICAM-1 in human venous endothelial cells by small interfering RNAs. Eur J Cardiothorac Surg. 2005;28(6):816–20. doi:10.1016/j.ejcts.2005.09.009.

    Article  Google Scholar 

  35. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22(3):261–8.

    Article  Google Scholar 

  36. Barbosa JN, Amaral IF, Aguas AP, Barbosa MA. Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J Biomed Mater Res A. 2010;93(1):20–8. doi:10.1002/jbm.a.32499.

    Google Scholar 

  37. Bajaj G, Van Alstine WG, Yeo Y. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS ONE. 2012;7(1):e30899. doi:10.1371/journalpone0030899PONE-D-11-17093.

    Article  Google Scholar 

  38. Xu P, Bajaj G, Shugg T, Van Alstine WG, Yeo Y. Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromolecules. 2010;11(9):2352–8. doi:10.1021/bm100481r.

    Article  Google Scholar 

  39. Lee SH, Senevirathne M, Ahn CB, Kim SK, Je JY. Factors affecting anti-inflammatory effect of chitooligosaccharides in lipopolysaccharides-induced RAW264.7 macrophage cells. Bioorg Med Chem Lett. 2009;19(23):6655–8. doi:10.1016/j.bmcl.2009.10.007.

    Article  Google Scholar 

  40. Lin CW, Chen LJ, Lee PL, Lee CI, Lin JC, Chiu JJ. The inhibition of TNF-alpha-induced E-selectin expression in endothelial cells via the JNK/NF-kappaB pathways by highly N-acetylated chitooligosaccharides. Biomaterials. 2007;28(7):1355–66. doi:10.1016/j.biomaterials.2006.11.006.

    Article  Google Scholar 

  41. Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. N-acetylglucosamine prevents IL-1 beta-mediated activation of human chondrocytes. J Immunol. 2001;166(8):5155–60.

    Article  Google Scholar 

  42. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA. 1994;91(9):3652–6.

    Article  Google Scholar 

  43. Xu LL, Warren MK, Rose WL, Gong W, Wang JM. Human recombinant monocyte chemotactic protein and other C–C chemokines bind and induce directional migration of dendritic cells in vitro. J Leukoc Biol. 1996;60(3):365–71.

    Google Scholar 

Download references

Acknowledgments

We want to thank Theresa Braun and Besmire Sutaj for conducting the qRT-PCR studies. Additionally, we want to thank Michaela Braun, Doris Armbruster and Gisela Jerabek for performing the hemocompatibility assays. Furthermore, we want to thank Stefan Fennrich for providing the endotoxin measurement system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Peter Wendel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolte, A., Hossfeld, S., Post, M. et al. Endotoxins affect diverse biological activity of chitosans in matters of hemocompatibility and cytocompatibility. J Mater Sci: Mater Med 25, 2121–2130 (2014). https://doi.org/10.1007/s10856-014-5244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5244-y

Keywords

Navigation