Skip to main content

Advertisement

Log in

Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silica-coated, silicon nanotubes (SCSNTs) and silica-coated, silicon nanoparticles (SCSNPs) have been synthesized by catalyst-free single-step gas phase condensation using the arc plasma process. Transmission electron microscopy and scanning tunneling microscopy showed that SCSNTs exhibited a wall thickness of less than 1 nm, with an average diameter of 14 nm and a length of several 100 nm. Both nano-structures had a high specific surface area. The present study has demonstrated cheaper, resistance-free and effective antibacterial activity in silica-coated silicon nano-structures, each for two Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) was estimated, using the optical densitometric technique, and by determining colony-forming units. The MIC was found to range in the order of micrograms, which is comparable to the reported MIC of metal oxides for these bacteria. SCSNTs were found to be more effective in limiting the growth of multidrug-resistant Staphylococcus aureus over SCSNPs at 10 μg/ml (IC 50 = 100 μg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mongillo JF. Nanotechnology in medicine and health. In: Mongillo JF, editor. Nanotechnology 101. Goleta: ABC-CLIO; 2007. p. 103–24.

    Google Scholar 

  2. Salata O. Applications of nano-particles in biology and medicine. J Nanobiotech. 2004;2:3.

    Article  Google Scholar 

  3. Chitravadivu C, Manian S, Kalaichelvi K. Antimicrobial studies on selected medicinal plants, Erode region, Tamilnadu, India. Middle-East J Sci Res. 2009;4:147–52.

    Google Scholar 

  4. Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nano-particles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20:6789–98.

    Article  CAS  Google Scholar 

  5. Beck R, Guterres S, Pohlmann A. Nanocosmetics and nanomedicines: new approaches for skin care. 1st ed. New York: Springer; 2011.

    Book  Google Scholar 

  6. Seil JT, Webster TJ. Zinc oxide nanoparticle and polymer antimicrobial biomaterial composites. In: Bioengineering conference, proceedings of the 2010 IEEE 36th annual northeast. Washington, DC: IEEE; 2010. p. 1–2.

  7. Liu P. Facile preparation of monodispersed core/shell zinc oxide@polystyrene (ZnO@PS) nano-particles via soapless seeded microemulsion polymerization. Colloids Surf A. 2006;291:155–61.

    Article  CAS  Google Scholar 

  8. Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam PK, Chiu J, Che C. Silver nano-particles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007;12:527–34.

    Article  CAS  Google Scholar 

  9. Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46:6900–14.

    Article  CAS  Google Scholar 

  10. Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc. 2006;128:9798–808.

    Article  CAS  Google Scholar 

  11. Xia X, Shurong L, Fayun J, Pu L. Synthesis and antimicrobial activity synthesis and antimicrobial activity of nano-fumed silica derivative with N,N-dimethyl-n-hexadecylamine. Life Sci J. 2006;3:59–62.

    Google Scholar 

  12. Song J, Kong H, Jang J. Enhanced antibacterial performance of cationic polymer modified silica nano-particles. Chem Commun 2009;5418–5420.

  13. Hebalkar NY, Acharya S, Rao TN. Preparation of bi-functional silica particles for antibacterial and self cleaning surfaces. J Colloid Interface Sci. 2011;364:24–30.

    Article  CAS  Google Scholar 

  14. Nakamura M, Shono M, Ishimura K. Synthesis, characterization, and biological applications of multifluorescent silica nano-particles. Anal Chem. 2012;79:6507–14.

    Article  Google Scholar 

  15. Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. Antimicrobial properties of a novel silver–silica nanocomposite material. Appl Environ Microbiol. 2009;75:2973–6.

    Article  CAS  Google Scholar 

  16. Trewyn BG, Whitman CM, Lin VS-Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nano-particles for controlled release of antibacterial agents. Nano Lett. 2012;4:2139–43.

    Article  Google Scholar 

  17. Zhanga X, Niua H, Yanb J, Caia Y. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf A. 2011;375:186–92.

    Article  Google Scholar 

  18. Lührs A-K, Geurtsen W. The application of silicon and silicates in dentistry: a review. Prog Mol Subcell Biol. 2009;47:359–80.

    Article  Google Scholar 

  19. Yang Y, Wu S, Chiu H, Lin P, Chen Y. Catalytic syntheses of silicon nanowires and silica nanotubes. In: 4th IEEE conference on nanotechnology, Munich; 2004. p. 448–50.

  20. Li R, Zhang Y, Zhou X, Sun X. Silica nanotubes decorated with internal periodic rings. Chem Phys Lett. 2008;458:138–42.

    Article  CAS  Google Scholar 

  21. Yu Y, Qiu H, Wu X, Li H, Li Y, Sakamoto Y, Inoue Y, Sakamoto K, Terasaki O, Che S. Synthesis and characterization of silica nanotubes with radially oriented mesopores. Adv Funct Mater. 2008;18:541–50.

    Article  CAS  Google Scholar 

  22. Yin Z-H, Liu X, Su Z-X. Novel fabrication of silica nano-tubes using multi-walled carbon nano-tubes as template. Bull Mater Sci. 2010;33:351–5.

    Article  CAS  Google Scholar 

  23. Bhoraskar SV, Tank CM, Mathe VL. Thermal plasma assisted synthesis of nanocrystalline silicon—a review. Nanosci Nanotechnol Lett. 2012;4:291–308.

    Article  CAS  Google Scholar 

  24. Maple PA, Hamilton-Miller JM, Brumfitt W. World-wide antibiotic resistance in methicillin-resistant Staphylococcus aureus. Lancet. 1989;1:537–40.

    Article  CAS  Google Scholar 

  25. Castrucci P, Diociaiuti M, Tank CM, Casciardi S, Tombolini F, Scarselli M, De Crescenzi M, Mathe VL, Bhoraskar SV. Si nanotubes and nanospheres with two-dimensional polycrystalline walls. Nanoscale. 2012;4:5195–201.

    Article  CAS  Google Scholar 

  26. Biró LP, Lazarescu S, Lambin P, Thiry PA, Fonseca A, Nagy JB, Lucas AA. Scanning tunneling microscope investigation of carbon nano-tubes produced by catalytic decomposition of acetylene. Phys Rev B. 1997;56:12490–8.

    Article  Google Scholar 

  27. Zha F-X, Czerw R, Carroll DL, Kohler-Redlich P, Wei B-Q, Loiseau A, Roth S. Scanning tunneling microscopy of chromium-filled carbon nano-tubes: tip effects and related topographic features. Phys Rev B. 2000;61:4884–9.

    Article  CAS  Google Scholar 

  28. Tersoff J, Hamann DR. Theory and application for the scanning tunneling microscope. Phys Rev Lett. 1983;50:1998–2001.

    Article  CAS  Google Scholar 

  29. Zha F-X, Carroll DL, Czerw R, Loiseau A, Pascard H, Clauss W, Roth S. Electronic effects in scanning tunneling microscopy of dendritic, Cr-filled carbon Nano-tubes. Phys Rev B. 2001;63:165432-1–5.

    Google Scholar 

  30. Park MH, Jang JW, Lee CE, Lee CJ. Interwall support in double-walled carbon nano-tubes studied by scanning tunneling microscopy. Appl Phys Lett. 2005;86:023110-1–3.

    Google Scholar 

  31. Hertel T, Walkup RE, Avouris P. Deformation of carbon nano-tubes by surface van der Waals forces. Phys Rev B. 1998;58:13870–3.

    Article  CAS  Google Scholar 

  32. Seil TJ, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed. 2012;7:2767–81.

    CAS  Google Scholar 

  33. Kallen AJ, et al. Health care-association invasive MRSA infections, 2005–2008. J Am Med Assoc. 2010;304:642–8.

    Article  Google Scholar 

  34. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279:71–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Council of Scientific & Industrial Research (CSIR), India, for their financial support under the emeritus scientist scheme and senior research fellowship. We also acknowledge the Board of Research in Nuclear Science (BRNS), India for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas L. Mathe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tank, C., Raman, S., Karan, S. et al. Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation. J Mater Sci: Mater Med 24, 1483–1490 (2013). https://doi.org/10.1007/s10856-013-4896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4896-3

Keywords

Navigation