Skip to main content

Advertisement

Log in

Composition and characterization of in situ usable light cured dental drug delivery hydrogel system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable polymers are compatible, permeable and nontoxic, thus they can provide a useful tool for drug delivery or tissue engineering. These polymers can form hydrogels, which are suitable vehicles for different types of materials e.g. drugs, bioactive molecules or cells. In the case of dentistry, photopolymerization is an obvious method to obtain in situ useable devices which can provide a more efficient way of tailoring drug release. A hydrogel system was developed based on poly-gamma-glutamic acid that was modified with methacryloyl groups to achieve this purpose. The resulting new reactive structure was proved by NMR spectroscopy. The swelling ratio of this type of hydrogel has been found remarkable, over 300 % after 24 h, and it can release 5 ng/mm2 metronidazole. The prepared hydrogels were nontoxic as viability, cytotoxicity tests and cell morphology investigations proved it. These results render this model system an excellent candidate for use as an in situ curing local drug delivery device. The new photoactive system can be utilized in the treatment of periodontal diseases or raising the effectiveness of drugs used only in the minimal effective dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bayne SC. Correlation of clinical performance with ‘in vitro tests’ of restorative dental materials that use polymer-based matrices. Dent Mater. 2012;28:52–71.

    Article  CAS  Google Scholar 

  2. Vert M. Degradable polymers in medicine: updating strategies and terminology. Int J Artif Organs. 2011;34:76–83.

    Article  CAS  Google Scholar 

  3. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  Google Scholar 

  4. Tallury P, Airrabeelli R, Li J, Paquette D, Kalachandra S. Release of antimicrobial and antiviral drugs from methacrylate copolymer system: effect of copolymer molecular weight and drug loading on drug release. Dent Mater. 2008;24:274–80.

    Article  CAS  Google Scholar 

  5. Shimoda A, Sawada S, Kano A, Maruyama A, Moquin A, Winnik FM, Akiyoshi K. Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surf B Biointerfaces. 2012;99:38–44.

    Article  CAS  Google Scholar 

  6. Tu J, Yu M, Lu Y, Cheng K, Weng W, Lin J, Wang H, Du P, Han G. Preparation and antibiotic drug release of mineralized collagen coatings on titanium. J Mater Sci Mater Med. 2012;23:2413–23.

    Article  CAS  Google Scholar 

  7. Lim SM, Oh SH, Lee HH, Yuk SH, Im GI, Lee JH. Dual growth factor-releasing nanoparticle/hydrogel system for cartilage tissue engineering. J Mater Sci Mater Med. 2010;21:2593–600.

    Article  CAS  Google Scholar 

  8. Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7:209–27.

    Article  Google Scholar 

  9. Silva-Correia J, Oliveira JM, Caridade SG, Oliveira JT, Sousa RA, Mano JF, Reis RL. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J Tissue Eng Regen Med. 2011;5:97–107.

    Article  Google Scholar 

  10. Sun B, Ma W, Su F, Wang Y, Liu J, Wang D, Liu H. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo. J Mater Sci Mater Med. 2011;22:2111–8.

    Article  CAS  Google Scholar 

  11. Guo Y, Yuan T, Xiao Z, Tang P, Xiao Y, Fan Y, Zhang X. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J Mater Sci Mater Med. 2012;23:2267–79.

    Article  CAS  Google Scholar 

  12. Salinas CN, Anseth KS. Mesenchymal stem cells for craniofacial tissue regeneration: designing hydrogel delivery vechicles. J Dent Res. 2009;88:681–92.

    Article  CAS  Google Scholar 

  13. Lee DY, Spångberg LS, Bok YB, Lee CY, Kum KY. The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:105–11.

    Article  Google Scholar 

  14. Srouji S, Rachmiel A, Blumenfeld I, Livne E. Mandibular defect repair by TGF-β and IGF-1 released from a biodegradable osteoinductive hydrogel. J Craniomaxillofac Surg. 2005;33:79–84.

    Article  Google Scholar 

  15. Obaidat RM, Bader A, Al-Rajab W, Abu Sheikha G, Obaidat AA. Preparation of mucoadhesive oral patches containing tetracycline hydrochloride and carvacrol for treatment of local mouth bacterial infections and candidiasis. Sci Pharm. 2011;79:197–212.

    Article  CAS  Google Scholar 

  16. Zeidner NS, Massung RF, Dolan MC, Dadey E, Gabitzsch E, Dietrich G, Levin ML. A sustained-release formulation of doxycycline hyclate (Atridox) prevents simultaneous infection of Anaplasma phagocytophilum and Borrelia burgdorferi transmitted by tick bite. J Med Microbiol. 2008;57:463–8.

    Article  CAS  Google Scholar 

  17. Hou LT, Yan JJ, Tsai AY, Lao CS, Lin SJ, Liu CM. Polymer-assisted regeneration therapy with Atrisorb barriers in human periodontal intrabony defects. J Clin Periodontol. 2004;31:68–74.

    Article  Google Scholar 

  18. Sakellari D, Ioannidis I, Antoniadou M, Slini T, Konstantinidis A. Clinical and microbiological effects of adjunctive, locally delivered chlorhexidine on patients with chronic periodontitis. J Int Acad Periodontol. 2010;12:20–6.

    Google Scholar 

  19. Kalsi R, Vandana KL, Prakash S. Effect of local drug delivery in chronic periodontitis patients: a meta-analysis. J Indian Soc Periodontol. 2011;15:304–9.

    Article  Google Scholar 

  20. Jain R, Mohamed F, Hemalatha M. Minocycline containing local drug delivery system in the management of chronic periodontitis: a randomized controlled trial. J Indian Soc Periodontol. 2012;16:179–83.

    Article  Google Scholar 

  21. Censi R, Di Martino P, Vermonden T, Hennink WE. Hydrogels for protein delivery in tissue engineering. J Control Release. 2012;161:680–92.

    Article  CAS  Google Scholar 

  22. Rosa V, Della Bona A, Cavalcanti BN, Nör JE. Tissue engineering: from research to dental clinics. Dent Mater. 2012;28:341–8.

    Article  CAS  Google Scholar 

  23. Akagi T, Kaneko T, Kida T, Akashi M. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J Control Release. 2005;08:226–36.

    Article  Google Scholar 

  24. Hirakura T, Yasugi K, Nemoto T, Sato M, Shimoboji T, Aso Y, Morimoto N, Akiyoshi K. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. J Control Release. 2010;142:483–9.

    Article  CAS  Google Scholar 

  25. Tavassol F, Schumann P, Lindhorst D, Sinikovic B, Voss A, von See C, Kampmann A, Bormann KH, Carvalho C, Mülhaupt R, Harder Y, Laschke MW, Menger MD, Gellrich NC, Rücker M. Accelerated angiogenic host tissue response to poly(l-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells. Tissue Eng Part A. 2010;16:2265–79.

    Article  CAS  Google Scholar 

  26. Gonçalves RM, Antunes JC, Barbosa MA. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes. Eur Cell Mater. 2012;23:249–60.

    Google Scholar 

  27. Hsieh CY, Hsieh HJ, Liu HC, Wang DM, Hou LT. Fabrication and release behavior of a novel freeze-gelled chitosan/gamma-PGA scaffold as a carrier for rhBMP-2. Dent Mater. 2006;22:622–9.

    Article  CAS  Google Scholar 

  28. Bajaj I, Singhal R. Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresour Technol. 2011;102:5551–61.

    Article  CAS  Google Scholar 

  29. Pereira CL, Antunes JC, Gonçalves RM, Ferreira-da-Silva F, Barbosa MA. Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. J Mater Sci Mater Med. 2012;23:1583–91.

    Article  CAS  Google Scholar 

  30. Krecz A, Pócsi I, Borbély J. Preparation and chemical modification of poly-gamma-l-glutamic acid. Folia Microbiol. 2001;46:183–6.

    Article  CAS  Google Scholar 

  31. Radu JEF, Novak L, Hartmann JF, Beheshti N, Kjoniksen AL, Nystrom B, Borbély J. Structural and dynamical characterization of poly-gamma-glutamic acid-based cross-linked nanoparticles. Colloid Polym Sci. 2008;286:365–76.

    Article  CAS  Google Scholar 

  32. Bíró T, Szabó I, Kovács L, Hunyadi J, Csernoch L. Distinct subpopulations in HaCaT cells as revealed by the characteristics of intracellular calcium release induced by phosphoinositide-coupled agonists. Arch Dermatol Res. 1998;290:270–6.

    Article  Google Scholar 

  33. Bae SR, Park C, Choi JC, Poo H, Kim CJ, Sung MH. Effects of ultra high molecular weight poly-gamma-glutamic acid from Bacillus subtilis (chungkookjang) on corneal wound healing. J Microbiol Biotechnol. 2010;20:803–8.

    CAS  Google Scholar 

  34. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec. 2005;5:352–66.

    Article  CAS  Google Scholar 

  35. Chaterji S, Kwon IK, Park K. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci. 2007;32:1083–122.

    Article  CAS  Google Scholar 

  36. Hornok V, Bujdosó T, Toldi J, Nagy K, Demeter I, Fazakas C, Krizbai I, Vécsei L, Dékány I. Preparation and properties of nanoscale containers for biomedical application in drug delivery: preliminary studies with kynurenic acid. J Neural Transm. 2012;119:115–21.

    Article  CAS  Google Scholar 

  37. Tiwari A, Grailer JJ, Pilla S, Steeber DA, Gong S. Biodegradable hydrogels based on novel photopolymerizable guar gum-methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater. 2009;5:3441–52.

    Article  CAS  Google Scholar 

  38. Ji QX, Zhao QS, Deng J, Lü R. A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation. J Mater Sci Mater Med. 2010;21:2435–42.

    Article  CAS  Google Scholar 

  39. Wang JJ, Liu F. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone hydrogels for reducing protein adsorption. J Mater Sci Mater Med. 2011;2651-7.

  40. Hu J, Hou Y, Park H, Choi B, Hou S, Chung A, Lee M. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater. 2012;8:1730–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant of TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project “Research University Project”. The authors do not have any financial or other relationship that may lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Hegedűs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakó, J., Vecsernyés, M., Ujhelyi, Z. et al. Composition and characterization of in situ usable light cured dental drug delivery hydrogel system. J Mater Sci: Mater Med 24, 659–666 (2013). https://doi.org/10.1007/s10856-012-4825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4825-x

Keywords

Navigation