Skip to main content

Advertisement

Log in

Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Parathyroid hormone (PTH) is a well-known therapeutic agent for osteoporosis treatment, however, the inconvenience of daily administration and side effect from systematic administration severely limits its application in clinic. PTH has been incorporated into a biomimetic calcium phosphate (CaP) coating via a co-precipitation method in a modified simulated body fluid. The aim of the current study is to evaluate the osseointegration response of PTH incorporated CaP coating on titanium implants. Implants with different doses of PTH were inserted into tibiae of mice and evaluated by X-ray, micro-CT, histology and back-scattered scanning electron microscopy. Improved osseointegration of the implants loaded with PTH was observed compared to CaP coating only after 28 days of implantation in mouse tibiae. Micro-CT analysis showed better bone integration around the implant incorporated with PTH. Bone area and bone contact evaluations have demonstrated that peri-implant bone regeneration is highly dependent on the dosage of PTH incorporated. The higher the PTH content, the more bone formed surrounding the implant. Therefore, our results suggest that biomimetic CaP coating could be a useful a carrier for PTH local delivery, which results in improved bone-to-implant integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89A:780–5.

    Article  Google Scholar 

  2. Jensen OT, Shulman LB, Block MS, Iacono VJ. Report of the sinus consensus conference of 1996. Int J Oral Maxillofac Implants. 1998;13:11–32.

    Google Scholar 

  3. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  4. Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11:383–9.

    Article  CAS  Google Scholar 

  5. Narayanan R, Seshadri SK, Kwon TY, Kim KH. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B Appl Biomater. 2008;85B:279–99.

    Article  CAS  Google Scholar 

  6. Habibovic P, Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc. 2002;85:517–22.

    Article  CAS  Google Scholar 

  7. Wen HB, de Wijn JR, Cui FZ, de Groot K. Preparation of bioactive Ti6Al4V surfaces by a simple method. Biomaterials. 1998;19:215–21.

    Article  CAS  Google Scholar 

  8. Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci. 2002;500:28–60.

    Article  CAS  Google Scholar 

  9. Schuler M, Trentin D, Textor M, Tosatti SG. Biomedical interfaces: titanium surface technology for implants and cell carriers. Nanomedicine. 2006;1:449–63.

    Article  CAS  Google Scholar 

  10. Nebe JB, Müller L, Lüthen F, Ewald A, Bergemann C, Conforto E, et al. Osteoblast response to biomimetically altered titanium surfaces. Acta Biomater. 2008;4:1985–95.

    Article  CAS  Google Scholar 

  11. Pham MT, Matz W, Reuther H, Richter E, Steiner G, Oswald S. Surface sensitivity of ion implanted titanium to hydroxyapatite formation. J Mater Sci Lett. 2000;19:443–5.

    Article  CAS  Google Scholar 

  12. Sargeant TD, Rao MS, Koh CY, Stupp SI. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials. 2008;29:1085–98.

    Article  CAS  Google Scholar 

  13. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  14. Peter B, Pioletti DP, Laib S, Bujoli B, Pilet P, Janvier P, et al. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36:52–60.

    Article  CAS  Google Scholar 

  15. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials. 2005;26:327–37.

    Article  CAS  Google Scholar 

  16. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implant Res. 2009;20:185–206.

    Article  Google Scholar 

  17. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28:5058–67.

    Article  CAS  Google Scholar 

  18. Weng J, Wang M, Chen JY. Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds. Biomaterials. 2002;23:2623–9.

    Article  CAS  Google Scholar 

  19. Wolke JGC, de Groot K, Jansen JA. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. J Biomed Mater Res. 1998;39:524–30.

    Article  CAS  Google Scholar 

  20. Milella E, Cosentino F, Licciulli A, Massaro C. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials. 2001;22:1425–31.

    Article  CAS  Google Scholar 

  21. Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:331–43.

    Article  CAS  Google Scholar 

  22. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution. Biomaterials. 2002;23:1921–30.

    Article  CAS  Google Scholar 

  23. Wen HB, de Wijn JR, van Blitterswijk CA, de Groot K. Incorporation of bovine serum albumin in calcium phosphate coating on titanium. J Biomed Mater Res. 1999;46:245–52.

    Article  CAS  Google Scholar 

  24. Yan W-Q, Nakamura T, Kawanabe K, Nishigochi S, Oka M, Kokubo T. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials. 1997;18:1185–90.

    Article  CAS  Google Scholar 

  25. Qu H, Wei M. The effect of temperature and initial pH on biomimetic apatite coating. J Biomed Mater Res B Appl Biomater. 2008;87:204–12.

    Google Scholar 

  26. Liu YM, de Groot K, Hunziker EB. Cell-mediated protein release from calcium-phosphate-coated titanium implants. J Control Release. 2005;101:346–7.

    CAS  Google Scholar 

  27. Choi S, Murphy WL. Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater. 2010;6:3426–35.

    Article  CAS  Google Scholar 

  28. Luong LN, McFalls KM, Kohn DH. Gene delivery via DNA incorporation within a biomimetic apatite coating. Biomaterials. 2009;30:6996–7004.

    Article  CAS  Google Scholar 

  29. Arrighi I, Mark S, Alvisi M, von Rechenberg B, Hubbell JA, Schense JC. Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials. 2009;30:1763–71.

    Article  CAS  Google Scholar 

  30. Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A. 1996;93:5753–8.

    Article  CAS  Google Scholar 

  31. Luginbuehl V, Meinel L, Merkle HP, Gander B. Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm. 2004;58:197–208.

    Article  CAS  Google Scholar 

  32. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A. 2004;71:528–37.

    Article  Google Scholar 

  33. Jung RE, Weber FE, Thoma DS, Ehrbar M, Cochran DL, Hammerle CH. Bone morphogenetic protein-2 enhances bone formation when delivered by a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Clin Oral Implants Res. 2008;19:188–95.

    Article  Google Scholar 

  34. Tam CS, Heersche JNM, Murray TM, Parsons JA. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: Differential effects of intermittent and continuous administration. Endocrinology. 1982;110:506–12.

    Article  CAS  Google Scholar 

  35. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11:337–49.

    Article  CAS  Google Scholar 

  36. Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1–34). J Bone Miner Res. 2002;17:2038–47.

    Article  CAS  Google Scholar 

  37. Jung RE, Cochran DL, Domken O, Seibl R, Jones AA, Buser D, et al. The effect of matrix bound parathyroid hormone on bone regeneration. Clin Oral Implants Res. 2007;18:319–25.

    Article  Google Scholar 

  38. Jilka RL, O’Brien CA, Ali AA, Roberson PK, Weinstein RS, Manolagas SC. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone. 2009;44:275–86.

    Article  CAS  Google Scholar 

  39. Seebach C, Skripitz R, Andreassen TT, Aspenberg P. Intermittent parathyroid hormone (1–34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats. J Orthop Res. 2004;22:472–8.

    Article  CAS  Google Scholar 

  40. Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40:1447–52.

    Article  CAS  Google Scholar 

  41. Whitfield J, Morley P, Willick G. The parathyroid hormone, its fragments and analogues - Potent bone-builders for treating osteoporosis. Expert Opin Investig Drugs. 2000;9:1293–315.

    Article  CAS  Google Scholar 

  42. Grey A. Emerging pharmacologic therapies for osteoporosis. Expert Opin Emerg Drugs. 2007;12:493–508.

    Article  CAS  Google Scholar 

  43. Yu X, Wei M. Preparation and evaluation of parathyroid hormone incorporated CaP coating via a biomimetic method. J Biomed Mater Res B Appl Biomater. 2011;97B:345–54.

    Article  CAS  Google Scholar 

  44. Chandhoke TK, Huang Y-F, Liu F, Gronowicz GA, Adams DJ, Harrison JR, et al. Osteopenia in transgenic mice with osteoblast-targeted expression of the inducible cAMP early repressor. Bone. 2008;43:101–9.

    Article  CAS  Google Scholar 

  45. James KS, Zimmerman MC, Kohn J. Small Animal Surgical and Histological Procedures for Characterizing the Performance of Tissue-Engineered Bone Grafts. Tissue Eng Methods Protoc. 1999;18:121–31.

    Article  CAS  Google Scholar 

  46. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophotonics Int. 2004;11:36–41.

    Google Scholar 

  47. Schwartz Z, Kieswetter K, Dean DD, Boyan BD. Underlying mechanisms at the bone-surface interface during regeneration. J Periodontal Res. 1997;32:166–71.

    Article  CAS  Google Scholar 

  48. Kurth AHA, Eberhardt C, Muller S, Steinacker M, Schwarz M, Bauss F. The bisphosphonate ibandronate improves implant integration in osteopenic ovariectomized rats. Bone. 2005;37:204–10.

    Article  CAS  Google Scholar 

  49. Liu Y, De Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005;36:745–57.

    Article  CAS  Google Scholar 

  50. Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, Sato M, et al. Anabolic and catabolic bone effects of human parathyroid hormone (1-34) are predicted by duration of hormone exposure. Bone. 2003;33:372–9.

    Article  CAS  Google Scholar 

  51. Liu Y, Enggist L, Kuffer AF, Buser D, Hunziker EB. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials. 2007;28:2677–86.

    Article  CAS  Google Scholar 

  52. Liu Y, Wu G, de Groot K. Biomimetic coatings for bone tissue engineering of critical-sized defects. J R Soc Interface. 2010. doi:10.1098/rsif.2010.0115.focus.

    Google Scholar 

  53. Vermeulen M, Giordano M, Trevani AS, Sedlik C, Gamberale R, Fernandez-Calotti P, et al. Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells. J Immunol. 2004;172:3196–204.

    CAS  Google Scholar 

  54. Wernike E, Hofstetter W, Liu Y, Wu G, Sebald HJ, Wismeijer D, et al. Long-term cell-mediated protein release from calcium phosphate ceramics. J Biomed Mater Res A. 2009;92:463–74.

    Google Scholar 

  55. Gao Y, Zhu S, Luo E, Li J, Feng G, Hu J. Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats. J Control Release. 2009;139:15–21.

    Article  CAS  Google Scholar 

  56. Liu X, Pettway GJ, McCauley LK, Ma PX. Pulsatile release of parathyroid hormone from an implantable delivery system. Biomaterials. 2007;28:4124–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Vilmaris Diaz-Doran and Dr. Douglas Adams for their assistance with Micro-CT. We would also like to thank Dr. Manshan Xu for his help for histological samples preparation. This work was supported by the National Science Foundation (BES 0503315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Wang, L., Jiang, X. et al. Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. J Mater Sci: Mater Med 23, 2177–2186 (2012). https://doi.org/10.1007/s10856-012-4682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4682-7

Keywords

Navigation