Skip to main content
Log in

Buffer-regulated biocorrosion of pure magnesium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO2 atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.

    Article  CAS  Google Scholar 

  2. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  CAS  Google Scholar 

  3. ISO 10993. Biological evaluation of medical devices—Part 5: tests for in vitro cytotoxicity. 2009.

  4. ISO 10993. Biological evaluation of medical devices—Part 12: sample preparation and reference materials. 2007.

  5. Fischer J, Pröfrock D, Hort N, Willumeit R, Feyerabend F. Improved cytotoxicity testing of magnesium materials. Mater Sci Eng B. 2011;176(11):830–4. doi:10.1016/j.mseb.2011.04.008.

    Article  CAS  Google Scholar 

  6. Ng WF, Chiu KY, Cheng FT. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater Sci Eng C. 2010;30(6):898–903.

    Article  CAS  Google Scholar 

  7. Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91A(1):221–30. doi:10.1002/jbm.a.32205.

    Article  CAS  Google Scholar 

  8. Apkon M. Cellular physiology of skeletal, cardiac and smooth muscle. In: Boron WF, Boulpaep EL, editors. Medical physiology. 2nd ed. New York: Saunders; 2008.

    Google Scholar 

  9. Hall JE. Guyton and hall textbook of medical physiology. 11th ed. Amsterdam: Elsevier; 2010.

    Google Scholar 

  10. Helgason CD, Miller CL. Basic cell culture protocols. 3rd ed. Methods in molecular biology. Totowa, NJ: Humana Press; 2005.

  11. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh MM. Hydrogen ion buffers for biological research. Biochemistry. 1966;5(2):467–77.

    Article  CAS  Google Scholar 

  12. Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng C. 2009;29(5):1559–68. doi:10.1016/j.msec.2008.12.015.

    Article  CAS  Google Scholar 

  13. Malda J, Woodfield TBF, Radisic M, Levenberg S, Oomens C, Baaijens FP, et al. Cell nutrition: in vitro and in vivo. Tissue engineering: a textbook. 2008. p. 327–62.

  14. Friedrich HE. Magnesium technology: metallurgy, design data, applications. Heidelberg: Springer; 2006.

    Google Scholar 

  15. Sugawara M, Maeda N. Hemorheology and blood flow. Tokyo: Corona Publishing Co.; 2003.

    Google Scholar 

  16. Song G, Atrens A. Understanding magnesium corrosion: a framework for improved alloy performance. Adv Eng Mater. 2003;5(12):837–58.

    Article  CAS  Google Scholar 

  17. Lee J-Y, Han G, Kim Y-C, Byun J-Y, Jang J-i, Seok H-K, et al. Effects of impurities on the biodegradation behavior of pure magnesium. Met Mater Int. 2009;15(6):955–61.

    Article  CAS  Google Scholar 

  18. Montemor MF, Simões AM, Carmezim MJ. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Appl Surf Sci. 2007;253(16):6922–31.

    Article  CAS  Google Scholar 

  19. Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093–103.

    Article  CAS  Google Scholar 

  20. Leon B, Jansen JA, editors. Thin calcium phosphate coatings for medical implants. New York: Springer; 2009.

    Google Scholar 

  21. Roberge PR. Handbook of corrosion engineering. New York: McGraw-Hill; 2000.

    Google Scholar 

  22. Regnier P, Lasaga AC, Berner RA, Han OH, Zilm KW. Mechanism of CO (super 2-) 3 substitution in carbonate-fluorapatite; evidence from FTIR spectroscopy, 13 C NMR, and quantum mechanical calculations. Am Mineral. 1994;79(9–10):809–18.

    CAS  Google Scholar 

  23. Rey C, Collins B, Goehl T, Dickson I, Glimcher M. The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int. 1989;45(3):157–64. doi:10.1007/bf02556059.

    Article  CAS  Google Scholar 

  24. Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek M. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett. 2007;5(1):9–12. doi:10.1007/s10311-006-0079-5.

    Article  CAS  Google Scholar 

  25. Doi Y, Moriwaki Y, Aoba T, Takahashi J, Joshin K. ESR and IR studies of carbonate-containing hydroxyapatites. Calcif Tissue Int. 1982;34(1):178–81. doi:10.1007/bf02411230.

    Article  CAS  Google Scholar 

  26. Burgess SK, Carey DM, Oxendine SL. Novel protein inhibits in vitro precipitation of calcium carbonate. Arch Biochem Biophys. 1992;297(2):383–7. doi:10.1016/0003-9861(92)90688-s.

    Article  CAS  Google Scholar 

  27. Rettig R, Virtanen S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res A. 2008;85A(1):167–75.

    Article  CAS  Google Scholar 

  28. Virtanen S. Corrosion of biomedical implant materials. Corros Rev. 2008;26(2):147–72.

    Article  CAS  Google Scholar 

  29. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.

    Article  CAS  Google Scholar 

  30. Ren Y, Huang J, Zhang B, Yang K. Preliminary study of biodegradation of AZ31B magnesium alloy. Front Mater Sci China. 2007;1(4):401–4.

    Article  Google Scholar 

  31. Ferguson JF, Jenkins D, Eastman J. Calcium phosphate precipitation at slightly alkaline pH values. J Water Pollut Control Fed. 1973;45(4):620–31.

    CAS  Google Scholar 

  32. Xin Y, Chu PK. Influence of Tris in simulated body fluid on degradation behavior of pure magnesium. Mater Chem Phys. 2010;124:33–5. doi:10.1016/j.matchemphys.2010.07.010.

    Article  CAS  Google Scholar 

  33. Soares HMVM, Conde PCFL. Electrochemical investigations of the effect of N-substituted aminosulfonic acids with a piperazinic ring pH buffers on heavy metal processes which may have implications on speciation studies. Anal Chim Acta. 2000;421(1):103–11.

    Article  CAS  Google Scholar 

  34. Sokolowska M, Bal W. Cu(II) complexation by “non-coordinating” N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES buffer). J Inorg Biochem. 2005;99(8):1653–60.

    Article  CAS  Google Scholar 

  35. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1:11–33.

    Article  CAS  Google Scholar 

  36. Witte F, Nellesen J, Crostack H-A, Kaese V, Pisch A, Beckmann F, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.

    Article  CAS  Google Scholar 

  37. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–44.

    Article  CAS  Google Scholar 

  38. Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31:2084–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support provided by the New Zealand Foundation for Research, Science and Technology (FRST). The authors would also like to thank Jemimah Walker for her input and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Staiger.

Additional information

Nicholas T. Kirkland and Jay Waterman have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkland, N.T., Waterman, J., Birbilis, N. et al. Buffer-regulated biocorrosion of pure magnesium. J Mater Sci: Mater Med 23, 283–291 (2012). https://doi.org/10.1007/s10856-011-4517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4517-y

Keywords

Navigation