Skip to main content

Advertisement

Log in

Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca2++Mg2++Zn2++Na++K+)/P ratio of 1.3–1.4 and various Me2+/(Me2++Ca2+) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600–1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg2+ and Zn2+ ion chemical behaviour. The temperature as well as the degree of Zn2+ and Mg2+ ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn2+ ion substituted calcium phosphates precursors at 800–1000°C. The Mg2+ ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498.

    Article  CAS  Google Scholar 

  2. Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol. 1997;172:129–91.

    Article  CAS  Google Scholar 

  3. Koroleva LF. Doped nanocrystalline calcium carbonate phosphates. Inorganic Mater. 2010;46:405–11.

    Article  CAS  Google Scholar 

  4. Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecas IB, Raicevic S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256:6083–9.

    Article  CAS  Google Scholar 

  5. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.

    Article  CAS  Google Scholar 

  6. Sogoa Y, Ito A, Kamo M, Sakurai T, Onuma K, Ichinose N, Otsuka M, LeGeros RZ. Hydrolysis and cytocompatibility of zinc-containing α-tricalcium phosphate powder. Mater Sci Eng. 2004;C24:709–15.

    Google Scholar 

  7. Tas C, Bhaduri SB, Jalota S. Preparation of Zn-doped β-tricalcium phosphate (β-Ca3(PO4)2) bioceramics. Mater Sci Eng. 2007;C27:394–401.

    Google Scholar 

  8. Burchfield CL, Tate AE, Jalota S, Bhaduri SB, Tas AC. Synthesis and in vitro cell culture of Zn-doped calcium phosphates. Eur Cells Mater. 2006;11(1):35.

    Google Scholar 

  9. Marchi J, Dantas ACS, Greil P, Bressiani JC, Bressiani AHA, Muller FA. Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater Res Bull. 2007;42:1040–50.

    Article  CAS  Google Scholar 

  10. Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J Mater Sci Mater Med. 2008;19:2669–77.

    Article  CAS  Google Scholar 

  11. Ania CT, Sammons RL, Macaskie LE, Ping Y, Lugg H, Marquis PM. Bacterial biosynthesis of a calcium phosphate bone-substitute material. J Mater Sci Mater Med. 2004;15:403–6.

    Article  Google Scholar 

  12. Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11:119–35.

    Article  CAS  Google Scholar 

  13. Moonga BS, Dempster DW. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995;10:453–7.

    Article  CAS  Google Scholar 

  14. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphates: preparation and properties. J Mater Sci Mater Med. 2003;14:201–9.

    Article  CAS  Google Scholar 

  15. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14:195–200.

    Article  CAS  Google Scholar 

  16. Sayer M, Stratilatov AD, Reid JW, Calderin L, Stott MJ, Yin X, MacKenzie M, Smith TJN, Hendry JA, Langstaff SD. Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials. 2003;24:369–82.

    Article  CAS  Google Scholar 

  17. Reid JW, Pietak AM, Sayer M, Dunfield D, Smith TJN. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials. 2005;26:2887–97.

    Article  CAS  Google Scholar 

  18. Tampieri A, Celotti G, Landi E. From biomimetic apatites to biologically inspired composites. Anal Bioanal Chem. 2005;381:568–76.

    Article  CAS  Google Scholar 

  19. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. II. Precipitation. J Biomed Mater Res. 1993;27:35–44.

    Article  CAS  Google Scholar 

  20. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res. 1994;28:1303–9.

    Article  CAS  Google Scholar 

  21. Petrov OE, Dyulgerova E, Petrov L, Popova R. Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca-P ceramics. Mater Lett. 2001;48:162–7.

    Article  CAS  Google Scholar 

  22. Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids. 1990;120:138–51.

    Article  CAS  Google Scholar 

  23. Sykora V. Chemicko analyticke tabulky. Praha; 1976.

  24. Parkhurst DL. User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 95-4227, 1995.

  25. Todorov T, Rabadjieva D, Tepavitcharova S. New thermodynamic database for more precise simulation of metal species in natural waters. J Univ Chem Technol Metall. 2006;41:97–102.

    CAS  Google Scholar 

  26. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci Mater Med. 1999;10:169–76.

    Article  Google Scholar 

  27. Araújo JC, Sader MS, Moreira EL, Moraes VCA, LeGeros RZ, Soares GA. Maximum substitution of magnesium for calcium sites in Mg-β-TCP structure determined by X-ray powder diffraction with the Rietveld refinement. Mater Chem Phys. 2009;118:337–40.

    Article  Google Scholar 

  28. Jalota S, Bhaduri SB, Tas AC. Using a synthetic body fluid (SBF) solution of 27 mM HCO3 to make bone substitutes more osteointegrative. Mater Sci Eng C. 2008;28:129–40.

    Article  CAS  Google Scholar 

  29. Wang H, Lin C, Hu R. Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid. Appl Surf Sci. 2009;255:4074–81.

    Article  CAS  Google Scholar 

  30. Xin F, Jian C, Jian-Peng Z, Qian W, Zhong-Cheng Z, Jian-Ming R. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid. Trans Nonferrous Met Soc China. 2009;19:347–52.

    Article  Google Scholar 

  31. Rabadjieva D, Gergulova R, Titorenkova R, Tepavitcharova S, Dyulgerova E, Balarew Chr, Petrov O. Biomimetic transformations of amorphous calcium phosphate: kinetic and thermodynamic studies. J Mater Sci Mater Med. 2010;21(9):2501–9.

    Article  CAS  Google Scholar 

  32. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem. 1995;58:49–58.

    Article  CAS  Google Scholar 

  33. Betts F, Blumenthal NC, Posner AS, Becker GL, Lehninger AL. Atomic structure of intracellular amorphous calcium phosphate deposits. Proc Natl Acad Sci USA. 1975;72:2088–92.

    Article  CAS  Google Scholar 

  34. Blumenthal NC, Betts F. Posner AS Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res. 1977;23:245–50.

    Article  CAS  Google Scholar 

  35. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.

    CAS  Google Scholar 

  36. Pearson R. Hard and soft acids and bases. Stroudsburg: Hutchinson Ross Publishing Company; 1973.

    Google Scholar 

  37. Klopman G. Chemical reactivity and the concept of charge- and frontier-controlled reactions. J Am Chem Soc. 1968;90:223–34.

    Article  CAS  Google Scholar 

  38. Danielchenko SN, Protsenko IYu, Sukhodub LF. Some features of thermo-activated structural transformation of biogenic and synthetic Mg-containing apatite with β-tricalciummagnesium phosphate formation. Cryst Res Technol. 2009;44:553–60.

    Article  Google Scholar 

  39. de Aza PN, Guitián F, Santos C, de Aza S, Cuscö R, Artús L. Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite and β-tricalcium phosphate. Chem Mater. 1997;9:916–22.

    Article  Google Scholar 

  40. Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, Onuma K, Kanzaki N, Sogo Y, Ichinose N. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng. 2002;C22:21–5.

    CAS  Google Scholar 

  41. Miyaji F, Kono Y, Suyama Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull. 2005;40:209–20.

    Article  CAS  Google Scholar 

  42. Cacciotti I, Bianco A. High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram Int. 2010;37(1):127–37.

    Article  Google Scholar 

  43. Ryu H-S, Youn H-J, Hong KS, Chang B-S, Leeb C-K, Chung S-S. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 2002;23:909–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Bulgarian Ministry of Education, Youth and Science under Projects DTK 02-70/2009 and DCVP-02/2/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rabadjieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabadjieva, D., Tepavitcharova, S., Gergulova, R. et al. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature. J Mater Sci: Mater Med 22, 2187 (2011). https://doi.org/10.1007/s10856-011-4415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4415-3

Keywords

Navigation