Skip to main content
Log in

Seeding density matters: extensive intercellular contact masks the surface dependence of endothelial cell–biomaterial interactions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effects of seeding density have often been overlooked in evaluating endothelial cell-biomaterial interactions. This study compared the cell attachment and proliferation characteristics of endothelial cells on modified poly (l-lactic acid) (PLLA) films conjugated to gelatin and chitosan at low and high seeding densities (5,000 and 50,000 cells/cm2). During the early stage (2 h) of cell-biomaterial interaction, a low seeding density enabled us to observe the intrinsic surface-dependent differences in cell attachment capacity and morphogenesis, whereas extensive intercellular interactions at high seeding density masked differences between substrates and improved cell attachment on low-affinity substrates. During the later stage of cell-biomaterial interaction over 7-days of culture, the proliferation rate was found to be surface-dependent at low seeding density, whereas this surface-dependent difference was not apparent at high seeding density. It is recommended that low seeding density should be utilized for evaluating biomaterial applications where EC density is likely to be low, such as in situ endothelialization of blood-contacting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhattacharya V, Cleanthis M, Stansby G. Preventing vascular graft failure: Endothelial cell seeding and tissue engineering. Vasc Dis Prev. 2005;2:21–7.

    Article  Google Scholar 

  2. Venkatraman SS, Boey F, Lao LL. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog Polym Sci. 2008;33:853–74.

    Article  CAS  Google Scholar 

  3. de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules. 2008;9:2969–79.

    Article  Google Scholar 

  4. Eisenbarth E, Velten D, Breme J. Biomimetic implant coatings. Biomol Eng. 2007;24:27–32.

    Article  CAS  Google Scholar 

  5. Lu A, Sipehia R. Antithrombotic and fibrinolytic system of human endothelial cells seeded on PTFE: The effects of surface modification of PTFE by ammonia plasma treatment and ECM protein coatings. Biomaterials. 2001;22:1439–46.

    Article  CAS  Google Scholar 

  6. Yang J, Bei J, Wang S. Enhanced cell affinity of poly (D, L-lactide) by combining plasma treatment with collagen anchorage. Biomaterials. 2002;23:2607–14.

    CAS  Google Scholar 

  7. Gumpenberger T, Heitz J, Bäuerle D, Kahr H, Graz I, Romanin C, Svorcik V, Leisch F. Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials. 2003;24:5139–44.

    Article  CAS  Google Scholar 

  8. Miller DC, Thapa A, Haberstroh KM, Webster TJ. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials. 2004;25:53–61.

    Article  CAS  Google Scholar 

  9. Bérard X, Rémy-Zolghadri M, Bourget C, Turner N, Bareille R, Daculsi R, Bordenave L. Capability of human umbilical cord blood progenitor-derived endothelial cells to form an efficient lining on a polyester vascular graft in vitro. Acta Biomater. 2009;5:1147–57.

    Article  Google Scholar 

  10. Boura C, Kerdjoudj H, Moby V, Vautier D, Dumas D, Schaaf P, Voegel JC, Stoltz JF, Menu P. Initial adhesion of endothelial cells on polyelectrolyte multilayer films. Bio-Med Mater Eng. 2006;16:S115–21.

    CAS  Google Scholar 

  11. Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ. Electrospun collagen-chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater. 2010;6:372–82.

    Article  CAS  Google Scholar 

  12. Crombez M, Chevallier P, Gaudreault RC, Petitclerc E, Mantovani D, Laroche G. Improving arterial prosthesis neo-endothelialization: Application of a proactive VEGF construct onto PTFE surfaces. Biomaterials. 2005;26:7402–9.

    Article  CAS  Google Scholar 

  13. Brewster LP, Bufallino D, Ucuzian A, Greisler HP. Growing a living blood vessel: Insights for the second hundred years. Biomaterials. 2007;28:5028–32.

    Article  CAS  Google Scholar 

  14. Avci-Adali M, Paul A, Ziemer G, Wendel HP. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials. 2008;29:3936–45.

    Article  CAS  Google Scholar 

  15. Rotmans JI, Heyligers MMJ, Verhagen HJM, Velema E, Nagtegaal MM, de Kleijn DPV, de Groot FG, Stroes ESG, Pasterkamp G. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 2005;112:12–8.

    Article  CAS  Google Scholar 

  16. Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiwm MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.

    Article  Google Scholar 

  17. Lin A, Ding X, Qiu F, Song X, Fu G, Ji J. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin-collagen multilayer. Biomaterials. 2010;31:4017–25.

    Article  CAS  Google Scholar 

  18. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10:21–33.

    Article  CAS  Google Scholar 

  19. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5:261–70.

    Article  CAS  Google Scholar 

  20. Nelson WJ. Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochem Soc Trans. 2008;36:149–55.

    Article  CAS  Google Scholar 

  21. Arthur WT, Noren NK, Keith B. Regulation of rho family GTPases by cell-cell and cell-matrix adhesion. Biol Res. 2002;35:239–46.

    Article  CAS  Google Scholar 

  22. Sakamoto Y, Ogita H, Hirota T, Kawakatsu T, Fukuyama T, Yasumi M, Kanzaki N, Ozaki M, Takai Y. Interaction of integrin αvβ3 with nectin: implication in cross-talk between cell-matrix and cell-cell junctions. J Biol Chem. 2006;281:19631–44.

    Article  CAS  Google Scholar 

  23. Schwartz MA, Ginsberg MH. Networks and crosstalk: Integrin signalling spreads. Nat Cell Biol. 2002;4:E65–8.

    Article  CAS  Google Scholar 

  24. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol. 2001;2:793–805.

    Article  CAS  Google Scholar 

  25. Nagahara S, Matsuda T. Cell-substrate and cell-cell interactions differently regulate cytoskeletal and extracellular matrix protein gene expression. J Biomed Mater Res. 1996;32:677–86.

    Article  CAS  Google Scholar 

  26. Xia Y, Boey F, Venkatraman SS. Surface modification of poly(l-lactic acid) with biomolecules to promote endothelialization. Biointerphases. 2010;5:FA32–40.

    Google Scholar 

  27. Treiser MD, Liu E, Dubin RA, Sung H-J, Kohn J, Moghe P. Profiling cell-biomaterial interactions via cell-based fluororeporter imaging. BioTechniques. 2007;43:361–8.

    Article  CAS  Google Scholar 

  28. Zhu Y, Gao C, Liu X, He T, Shen J. Immobilization of biomacromolecules onto aminolyzed poly(l-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 2004;10:53–61.

    Article  CAS  Google Scholar 

  29. Zhu Y, Gao C, Liu Y, Shen J. Endothelial cell functions in vitro cultured on poly(l-lactic acid) membranes modified with different methods. J Biomed Mater Res A. 2004;69A:436–43.

    Article  CAS  Google Scholar 

  30. Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008;9:446–54.

    Article  CAS  Google Scholar 

  31. Liebner S, Cavallaro U, Dejana E. The multiple languages of endothelial cell-to-cell communication. Arterioscl Throm Vas. 2006;26:1431–8.

    Article  CAS  Google Scholar 

  32. Huang Y, Venkatraman SS, Boey FYC, Umashankar PR, Mohanty M, Arumugam S. The short-term effect on restenosis and thrombosis of a cobalt-chromium stent eluting two drugs in a porcine coronary artery model. J Interv Cardiol. 2009;22:466–78.

    Article  Google Scholar 

  33. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43:55–62.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank National Research Foundation of Singapore for funding the work with their Competitive Research Grant and Dr. Wong Yee Shan for critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbu S. Venkatraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Prawirasatya, M., Heng, B.C. et al. Seeding density matters: extensive intercellular contact masks the surface dependence of endothelial cell–biomaterial interactions. J Mater Sci: Mater Med 22, 389–396 (2011). https://doi.org/10.1007/s10856-010-4211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4211-5

Keywords

Navigation